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Computer Science & Computation

Mathematics vs Computer Science
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Computer Science & Computation

Mathematics
The declarative knowledge
The "what-is" knowledge
Defines what the problem is

Computer Science
The imperative knowledge
The "how-to" knowledge
Tells how to solve the problem
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Computer Science & Computation

Square root for a mathematician
The square root of a non-negative number x is a non-negative number y
such that the square of y is x. Symbolically, for every non-negative number
x , y =

√
x if x = y2 ∩ y ≥ 0.

(We do not consider complex numbers here.)

Square root for a computer scientist
In order to find an approximation of

√
x ,

Make a guess of y;
Calculate the average of y and x/y ;
Keep improving the guess until it is good enough.
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Computer Science & Computation

From Computer Science to Computation
To write a program, means to express a computational processes.
Usually, we prefer a more effective computational processes.
A computational processes is composed of many procedures, each
of which is a program.
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Computation & Programming Language

How to communicate a mathematical process
After hundreds of years, mathematicians have defined a full set of
notations to express the mathematical communication formally.
The most basic ones are +,−,×,÷.

How to communicate a computational process
Although Computer Science is much younger, we did/are doing/will
continue to do similar things.
They are called programming languages.
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Computation & Programming Language

To summarize
Computation - the process of solving problems
Program - the individual procedure of the computational processes
Programming language - the tool to communicate in CS
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The Source Language

About the Source
Offical tailor-made programming language for CS1101S.
A sub-language of JavaScript.
Used to be called JediScript.

Source Playground
Standalone version at http://128.199.210.247/playground.
Embedded version in the Source Academy.
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The Source Language

Components of a programming language
Primitives
Combination
Abstraction
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The Source Language

Components of a programming language
Primitives:
The smallest constituent unit of a programming language.
Combination:
Ways to put primitives together.
Abstraction:
The method to simplify the messy combinations.
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Details - Primitives

Primitive Data
Numerals:
Booleans:
Strings:

Primitive Procedures
Basic algebra:
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Details - Primitives

Primitive Data
Numerals: 6, -54, 0, 123.45, 11.5e2, NaN, etc.
Booleans: true, false
Strings: "Singapore", "N", ’1101’, etc.

Primitive Procedures
Basic algebra: +,−,×,÷, %.
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Details - Primitives

What are primitives?
The smallest constituent unit of a programming language.

How to understand?
The story of atom in chemistry.
The story of primitive in CS.
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Details - Combination

Means of combination
Of course, just put primitives together, "combine"!

Wait, how to put them together?
Apply operators on operands (and thus become an expression).
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Details - Combination

A simple example
Operand: 1, 2
Operator: +
Expression (result of combination): 1 + 2
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Details - Combination

But, is this enough?
No, operands can become combination as well.

Another example
Operand: 1 + 2, 3 + 4
Operator: *
Complex expression (combination of combination): (1 + 2) * (3 + 4)
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Details - Combination

More operators
Arithmetic operators:
Comparison operators:
Boolean operators:
Conditional operators:
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Details - Combination

More operators
Arithmetic operators: +,−,×,÷, %.
Comparison operators: >, <,≥,≤, ===, ! ==.
Boolean operators: &&, ||, !.
Conditional operators: <stmt-a> ? <stmt-b> : <stmt-c>.

Caution
What is the difference between =, == and ===?
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Details - Combination

Is combination really that simple?
Maybe yes, if you are adding two integers.
But, what if you need to add two complex numbers?
What if you need to add two vectors?
What if you need to add two electrical signals?
...
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Details - Abstraction

Means of abstraction
To abstract data: use naming;
To abstract procedures: use functions.
Sometimes, naming and functions are combined together.
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Details - Abstraction

Naming
To give a name to some data.
When you want to refer to that data in the future, use its name
instead.
In Source, use var name = data; to name some data.

Functions
To abstract a procedure: use functions.
Two steps to use a function: define a function, apply a function.
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Details - Abstraction

Example
Given the radius of a circle, please write a function to calculate the
area of this circle.

Notice
You are only allowed to use the 2nd abstraction technique: functions.
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Details - Abstraction

Answer
The area of a circle with a radius of 3:

( function (x) { return 3.14159 * x * x; } )(3);

The area of a circle with a radius of 5.6:

( function (x) { return 3.14159 * x * x; } )(5.6);
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Details - Abstraction

Naming of functions
Waste of time to repeat writing the same expressions.
Solution: Give them names.
Why: Combination of means of abstraction.
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Details - Abstraction

Example again
To calculate the area of a circle:
var pi = 3.1415926535;
var circle = function (x) { return pi * x * x; };

Thus..
The area of a circle with a radius of 3: circle(3);

The area of a circle with a radius of 5.6: circle(5.6);
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Details - Abstraction

Naming of functions - another way to write

var pi = 3.1415926535;

function circle (x) {
return pi * x * x;

}

To use them - the same
The area of a circle with a radius of 3: circle(3);

The area of a circle with a radius of 5.6: circle(5.6);
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The Source Language

To summarize
Primitives: primitive data & primitive procedures;
Combination: expression = operands + operators;
Abstraction: naming (for data) & functions (for procedures).
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The Source Language

A few terms before we continue...
Solution to a problem
Computational Process
Program
Statement
Expression
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Black-box Abstraction

The black-box concept
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Black-box Abstraction

Why do we need the black-box?
Because, for the details inside the box:

I do not know.
I cannot know.
I don’t want to know.
I don’t need to know.
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Black-box Abstraction
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Black-box Abstraction
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Black-box Abstraction

You already accept this “black-box” concept!
Do you know about the internal representation of primitives?
But, do you use primitives?
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Black-box Abstraction

Example
The area of a circle with a radius of 3: circle(3);

Why? I don’t need to know!

So, what do you know?
I know:

circle(?); will give me the area of a circle with a radius of ?.
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To Write Good Programs

Good coding style
How to write comments?
How to give names?
Where to put whitespaces?
Where to put line breaks?
Where to put curly braces?
How to use indentation?
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To Write Good Programs

Example

// Calculates the factorial of a non - negative integer n.
function factorial (n) {

// By definition , the factorial of 0 is 1.
if (n === 0) {

return 1;
} else {

return factorial (n - 1) * n;
}

}

var x = 5;
factorial (2 * x);
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To Write Good Programs

Write good programs in your submission
In all missions and sidequests, the deduction of marks for bad coding
styles may be a lot.
A lot!
A lot!
A lot!
...

So...
Write good programs, seriously!
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Discussion Group Problems

Let’s discuss them now.
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End

The End
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