
Welcome

CS1101S Discussion Group Week 2:
Computation, Source Language & Abstraction

Niu Yunpeng

niuyunpeng@u.nus.edu

August 22, 2017

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 1 / 43



Overview

1 Computation
What is computation
Computation & programming language

2 The Source Language
Why Source?
Components of a programming language
Source language details

3 Abstraction
Black-box abstraction

4 To write good programs

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 2 / 43



Computer Science & Computation

Mathematics vs Computer Science

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 3 / 43



Computer Science & Computation

Mathematics
The declarative knowledge
The "what-is" knowledge
Defines what the problem is

Computer Science
The imperative knowledge
The "how-to" knowledge
Tells how to solve the problem

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 4 / 43



Computer Science & Computation

Square root for a mathematician
The square root of a non-negative number x is a non-negative number y
such that the square of y is x. Symbolically, for every non-negative number
x , y =

√
x if x = y2 ∩ y ≥ 0.

(We do not consider complex numbers here.)

Square root for a computer scientist
In order to find an approximation of

√
x ,

Make a guess of y;
Calculate the average of y and x/y ;
Keep improving the guess until it is good enough.

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 5 / 43



Computer Science & Computation

From Computer Science to Computation
To write a program, means to express a computational processes.
Usually, we prefer a more effective computational processes.
A computational processes is composed of many procedures, each
of which is a program.

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 6 / 43



Computation & Programming Language

How to communicate a mathematical process
After hundreds of years, mathematicians have defined a full set of
notations to express the mathematical communication formally.
The most basic ones are +,−,×,÷.

How to communicate a computational process
Although Computer Science is much younger, we did/are doing/will
continue to do similar things.
They are called programming languages.

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 7 / 43



Computation & Programming Language

To summarize
Computation - the process of solving problems
Program - the individual procedure of the computational processes
Programming language - the tool to communicate in CS

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 8 / 43



Overview

1 Computation
What is computation
Computation & programming language

2 The Source Language
Why Source?
Components of a programming language
Source language details

3 Abstraction
Black-box abstraction

4 To write good programs

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 9 / 43



The Source Language

About the Source
Offical tailor-made programming language for CS1101S.
A sub-language of JavaScript.
Used to be called JediScript.

Source Playground
Standalone version at http://128.199.210.247/playground.
Embedded version in the Source Academy.

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 10 / 43

http://128.199.210.247/playground


The Source Language

Components of a programming language
Primitives
Combination
Abstraction

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 11 / 43



The Source Language

Components of a programming language
Primitives:
The smallest constituent unit of a programming language.
Combination:
Ways to put primitives together.
Abstraction:
The method to simplify the messy combinations.

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 12 / 43



Details - Primitives

Primitive Data
Numerals:
Booleans:
Strings:

Primitive Procedures
Basic algebra:

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 13 / 43



Details - Primitives

Primitive Data
Numerals: 6, -54, 0, 123.45, 11.5e2, NaN, etc.
Booleans: true, false
Strings: "Singapore", "N", ’1101’, etc.

Primitive Procedures
Basic algebra: +,−,×,÷, %.

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 14 / 43



Details - Primitives

What are primitives?
The smallest constituent unit of a programming language.

How to understand?
The story of atom in chemistry.
The story of primitive in CS.

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 15 / 43



Details - Combination

Means of combination
Of course, just put primitives together, "combine"!

Wait, how to put them together?
Apply operators on operands (and thus become an expression).

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 16 / 43



Details - Combination

A simple example
Operand: 1, 2
Operator: +
Expression (result of combination): 1 + 2

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 17 / 43



Details - Combination

But, is this enough?
No, operands can become combination as well.

Another example
Operand: 1 + 2, 3 + 4
Operator: *
Complex expression (combination of combination): (1 + 2) * (3 + 4)

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 18 / 43



Details - Combination

More operators
Arithmetic operators:
Comparison operators:
Boolean operators:
Conditional operators:

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 19 / 43



Details - Combination

More operators
Arithmetic operators: +,−,×,÷, %.
Comparison operators: >, <,≥,≤, ===, ! ==.
Boolean operators: &&, ||, !.
Conditional operators: <stmt-a> ? <stmt-b> : <stmt-c>.

Caution
What is the difference between =, == and ===?

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 20 / 43



Details - Combination

Is combination really that simple?
Maybe yes, if you are adding two integers.
But, what if you need to add two complex numbers?
What if you need to add two vectors?
What if you need to add two electrical signals?
...

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 21 / 43



Details - Abstraction

Means of abstraction
To abstract data: use naming;
To abstract procedures: use functions.
Sometimes, naming and functions are combined together.

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 22 / 43



Details - Abstraction

Naming
To give a name to some data.
When you want to refer to that data in the future, use its name
instead.
In Source, use var name = data; to name some data.

Functions
To abstract a procedure: use functions.
Two steps to use a function: define a function, apply a function.

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 23 / 43



Details - Abstraction

Example
Given the radius of a circle, please write a function to calculate the
area of this circle.

Notice
You are only allowed to use the 2nd abstraction technique: functions.

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 24 / 43



Details - Abstraction

Answer
The area of a circle with a radius of 3:

( function (x) { return 3.14159 * x * x; } )(3);

The area of a circle with a radius of 5.6:

( function (x) { return 3.14159 * x * x; } )(5.6);

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 25 / 43



Details - Abstraction

Naming of functions
Waste of time to repeat writing the same expressions.
Solution: Give them names.
Why: Combination of means of abstraction.

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 26 / 43



Details - Abstraction

Example again
To calculate the area of a circle:
var pi = 3.1415926535;
var circle = function (x) { return pi * x * x; };

Thus..
The area of a circle with a radius of 3: circle(3);

The area of a circle with a radius of 5.6: circle(5.6);

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 27 / 43



Details - Abstraction

Naming of functions - another way to write

var pi = 3.1415926535;

function circle (x) {
return pi * x * x;

}

To use them - the same
The area of a circle with a radius of 3: circle(3);

The area of a circle with a radius of 5.6: circle(5.6);

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 28 / 43



The Source Language

To summarize
Primitives: primitive data & primitive procedures;
Combination: expression = operands + operators;
Abstraction: naming (for data) & functions (for procedures).

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 29 / 43



The Source Language

A few terms before we continue...
Solution to a problem
Computational Process
Program
Statement
Expression

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 30 / 43



Overview

1 Computation
What is computation
Computation & programming language

2 The Source Language
Why Source?
Components of a programming language
Source language details

3 Abstraction
Black-box abstraction

4 To write good programs

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 31 / 43



Black-box Abstraction

The black-box concept

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 32 / 43



Black-box Abstraction

Why do we need the black-box?
Because, for the details inside the box:

I do not know.
I cannot know.
I don’t want to know.
I don’t need to know.

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 33 / 43



Black-box Abstraction

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 34 / 43



Black-box Abstraction

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 35 / 43



Black-box Abstraction

You already accept this “black-box” concept!
Do you know about the internal representation of primitives?
But, do you use primitives?

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 36 / 43



Black-box Abstraction

Example
The area of a circle with a radius of 3: circle(3);

Why? I don’t need to know!

So, what do you know?
I know:

circle(?); will give me the area of a circle with a radius of ?.

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 37 / 43



Overview

1 Computation
What is computation
Computation & programming language

2 The Source Language
Why Source?
Components of a programming language
Source language details

3 Abstraction
Black-box abstraction

4 To write good programs

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 38 / 43



To Write Good Programs

Good coding style
How to write comments?
How to give names?
Where to put whitespaces?
Where to put line breaks?
Where to put curly braces?
How to use indentation?

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 39 / 43



To Write Good Programs

Example

// Calculates the factorial of a non - negative integer n.
function factorial (n) {

// By definition , the factorial of 0 is 1.
if (n === 0) {

return 1;
} else {

return factorial (n - 1) * n;
}

}

var x = 5;
factorial (2 * x);

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 40 / 43



To Write Good Programs

Write good programs in your submission
In all missions and sidequests, the deduction of marks for bad coding
styles may be a lot.
A lot!
A lot!
A lot!
...

So...
Write good programs, seriously!

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 41 / 43



Discussion Group Problems

Let’s discuss them now.

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 42 / 43



End

The End

Niu Yunpeng CS1101S DG Week 2 August 22, 2017 43 / 43


	Computation
	What is computation
	Computation & programming language

	The Source Language
	Why Source?
	Components of a programming language
	Source language details

	Abstraction
	Black-box abstraction

	To write good programs

