
Welcome

CS1101S Discussion Group Week 3:
Abstraction, Recursion & Order of Growth

Niu Yunpeng

niuyunpeng@u.nus.edu

August 29, 2017

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 1 / 90

Before we start

DG Participation Marks
In class?
In WhatsApp Group?
Ask and/or answer?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 2 / 90

Overview

1 Review of abstraction
From last week
A good abstraction
Scoping

2 Recursion
To understand recursion
To use recursion
Examples
Exercises

3 Order of growth
To understand order of growth
Exercises

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 3 / 90

Review of Abstraction

Components of a programming language
Primitives:
The smallest constituent unit of a programming language.
Combination:
Ways to put primitives together.
Abstraction:
The method to simplify the messy combinations.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 4 / 90

Review of Abstraction

Means of abstraction
To abstract data: use naming;
To abstract procedures: use functions.
Sometimes, naming and functions are combined together.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 5 / 90

Review of Abstraction

Define a function

var pi = 3.1415926535;

function square (x) {
return x * x;

}

function circle (x) {
return pi * square (x);

}

Apply a function
The area of a circle with a radius of 3: circle(3);

The area of a circle with a radius of 5.6: circle(5.6);

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 6 / 90

Review of Abstraction

What makes a good abstraction?
Modularity
Readability
Reusability
Maintainability

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 7 / 90

Review of Abstraction

What makes a good abstraction?
Modularity:
Separate multiple steps (and sub-steps).
Readability:
Easy for others to read and understand.
Reusability:
Provide a generic interface to be used commonly.
Maintainability:
Convenient to debug, refactor and deploy.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 8 / 90

Scope of Variables

Scoping rules
Pre-declared built-in functions or variables?
Formal parameters?
Global variables?
Local variables?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 9 / 90

Overview

1 Review of abstraction
From last week
A good abstraction
Scoping

2 Recursion
To understand recursion
To use recursion
Examples
Exercises

3 Order of growth
To understand order of growth
Exercises

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 10 / 90

Recursion

Recursion & iteration
When we need to solve a very large problem, in general, we will have two
approaches:

Bottom-up approach
Top-down approach

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 11 / 90

Recursion

Recursion & iteration
Iteration: the buttom-up approach;
Recursion: the top-down approach.

Notice
We will start with and mainly focus on recursion (the top-down
approach).

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 12 / 90

Recursion

Recursion is beautiful

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 13 / 90

Recursion

Recursion is beautiful

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 14 / 90

Recursion

Recursion is beautiful

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 15 / 90

Recursion

How to understand recursion?
Use substitution model .
In details, it means two “replace”:

Replace a function call by its function body;
Replace formal parameters by actual arguments.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 16 / 90

Recursion

Recursive function
Any function that calls itself (directly or indirectly) is called a
recursive function.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 17 / 90

Recursion

To write recursive functions correctly
Base case(s)
Scale
Sub-problem(s)

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 18 / 90

Recursion

To write recursive functions correctly
Base case(s):
the largest small problems that can be solved without recursion;
Scale:
the measurement of the size of the problem;
Sub-problem(s):
the relationship between one larger problem and all of its smaller
sub-problems.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 19 / 90

Recursion

Example of a recursive function

function stackn (n, pic) {
return n === 1 ? pic

: sf(1 / n, pic , stackn (n - 1, pic));
}

To write this recursive function correctly
Base case(s):
Scale:
Sub-problem(s):

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 20 / 90

Recursion

Example of a recursive function

function stackn (n, pic) {
return n === 1 ? pic

: sf(1 / n, pic , stackn (n - 1, pic));
}

To write this recursive function correctly
Base case(s): n = 1;
Scale: n;
Sub-problem(s): Divide the area into n pieces, where the current level
takes the top one piece, the rest takes n − 1 pieces.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 21 / 90

Recursion

Another example

// Calculates the factorial of a non - negative integer n.
// Pre - condition : The input of n is a non - negative integer .
function fact(n) {

// By definition , the factorial of 0 is 1.
return n === 0 ? 1 : fact(n - 1) * n;

}

To write this recursive function correctly
Base case(s):
Scale:
Sub-problem(s):

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 22 / 90

Recursion

Another example

// Calculates the factorial of a non - negative integer n.
// Pre - condition : The input of n is a non - negative integer .
function fact(n) {

// By definition , the factorial of 0 is 1.
return n === 0 ? 1 : fact(n - 1) * n;

}

To write this recursive function correctly
Base case(s): n = 0;
Scale: n;
Sub-problem(s): The factorial of n is the product of the fatorial of
n − 1 and itself.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 23 / 90

Recursion

Deferred operation
The operations that have to be suspended because they need to wait
for some other operations to finish first.
In order to suspend them, we need to remember them in the memory,
which is a waste of space.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 24 / 90

Recursion

Why do they occur?
For recursive functions, if the execution of the recursive function call
is not the only and last step, all of the other steps have to wait for it,
then they will become deferred operations.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 25 / 90

Recursion

Recursive & iterative process
Execution of a recursive function may give rise to either:

Recursive process: those with deferred operations.
Iterative process: those without deferred operations.

Task today
Turn every recursive process into an iterative one!

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 26 / 90

Recursion

To turn a recursive process into an iterative one
Use a variable to remember the operation that we have to wait for;
Add a function parameter so that we can keep track of that variable;
Wrap with an outer function so that the interface does not change
(the user does not see any additional parameter).

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 27 / 90

Recursion

Classical examples of recursion
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change
Permutation / combination
...

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 28 / 90

Recursion

Examples that we are going to cover today...
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 29 / 90

Recursion

Factorial
In mathematics, the factorial of a non-negative integer n, denoted by
n!, is the product of all positive integers less than or equal to n.
According to the definition of empty product, the factorial of 0 is 1.
Symbolically, we have

n! =
n∏

k=1
k,∀n ≥ 0 and 0! = 1

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 30 / 90

Recursion

Factorial 1

// This version gives rise to a recursive process .
function fact(n) {

// By definition , the factorial of 0 is 1.
return n === 0 ? 1 : fact(n - 1) * n;

}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 31 / 90

Recursion

Factorial 2

// This version gives rise to an iterative process .
function fact(n) {

function iter(x, result) {
return x === 0 ? result : iter(x - 1, result * x);

}

return iter(n, 1);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 32 / 90

Recursion

Factorial 3

// This version gives rise to an iterative process .
function fact(n) {

function iter(x, result) {
return x === n ? result * x

: iter(x + 1, result * x);
}

return n === 0 ? 1 : iter (1, 1);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 33 / 90

Recursion

Factorial 4

// This version gives rise to an iterative process .
function fact(n) {

function iter(x, result) {
return x > n ? result : iter(x + 1, result * x);

}

return iter (1, 1);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 34 / 90

Recursion

Square root - Newton’s method
In order to find an approximation of

√
x ,

Make a guess of y;
Calculate the average of y and x/y ;
Keep improving the guess until it is good enough.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 35 / 90

Recursion

Hint
How to make the initial guess?
How to improve the guess?
What is “good enough”?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 36 / 90

Recursion

Hint
The initial guess: 1;
To improve the guess: calculate the average of y and x/y ;
“Good enough”: set a threshold value, like 1

10000 .

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 37 / 90

Recursion

Square root

// Calculates the square root of an integer .
function sqrt(x) {

function iter(guess) {
var improved = (guess + x / guess) / 2;
var diff = Math.abs(improved - guess);

return diff < 1 / 10000 ? guess : iter(improved);
}

return iter (1);
}

Think about it...
Correctness?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 38 / 90

Recursion

Power function - exponentiation
Exponentiation is a mathematical operation, written as bn, involving
two numbers, the base b and the exponent n.
Here, at first, we only consider the case that the exponent is a natural
number and the base is a real number.
Symbolically, we have

bn = b × · · · × b︸ ︷︷ ︸
n

, ∀b ∈ R and ∀n ∈ N

Notice that 00 is not defined mathematically.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 39 / 90

Recursion

Power function 1

// This version gives rise to a recursive process .
function power(b, n) {

return n === 0 ? 1 : b * power(b, n - 1);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 40 / 90

Recursion

Power function 2

// This version gives rise to an iterative process .
function power(b, n) {

function iter(k, result) {
return k === 0 ? result : iter(k - 1, result * b);

}

return iter(n, 1);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 41 / 90

Recursion

Power function 3

// This version also gives rise to an iterative process .
function power(b, n) {

function iter(k, result) {
return k === n ? result : iter(k + 1, result * b);

}

return iter (0, 1);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 42 / 90

Recursion

Fast power 1

// This version gives rise to a recursive process .
function fast_power (b, n) {

if (n === 0) {
return 1;

} else {
return n % 2 === 0 ? fast_power (b * b, n / 2)

: b * fast_power (b, n - 1);
}

}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 43 / 90

Recursion

(Not really) fast power 2

// This version gives rise to an iterative process .
function fast_power (b, n) {

function iter(k, res) {
if (k === 0) {

return res;
} else {

return k % 2 === 0 ? iter(k / 2, res * res)
: iter(k - 1, res * b);

}
}
return iter(n, 1);

}

Think about it...
What’s wrong with it? Speed or correctness or ...?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 44 / 90

Recursion

(Not really) fast power 3

// This version gives rise to an iterative process .
function fast_power (b, n) {

function iter(k, res) {
if (k === 0) {

return res;
} else {

return k % 2 === 0 ? iter(k / 2, res * res)
: iter(k - 1, res * b);

}
}
return iter(n, b);

}

Think about it...
What’s wrong with it? Speed or correctness or ...?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 45 / 90

Recursion

Fast power 4

// This version also gives rise to an iterative process .
function fast_power (b, n) {

function iter(b, k, res) {
if (k === 0) {

return res;
} else {

return k % 2 === 0 ? iter(b * b, k / 2, res)
: iter(b, k - 1, res * b);

}
}
return iter(b, n, 1);

}

Think about it...
Time/space complexity?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 46 / 90

Recursion

Why is “fast_power” fast?
In normal power function, we iterate through 1...n. Thus, we have to
result in a linear order of growth.
In fast power function, we make use of the relationship bn = (b2)n/2.
Thus, we can skip some of 1...n and achieve a logarithmic order of
growth.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 47 / 90

Recursion

To implement the “skip” in “fast_power”
Binary search approach: use the sequence n, n

2 , n
4 , ..., 2, 1.

What about the other direction?
Aggressive cow approach: use the sequence 1, 2, ..., n

4 , n
2 , n.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 48 / 90

Recursion

(Not so) fast power 1

// This version gives rise to a recursive process .
function not_so_fast_power (b, n) {

function part_iter (unit , k) {
if (k === n) {

return unit;
} else {

return k * 2 <= n ? part_iter (unit * unit , k * 2)
: b * part_iter (unit , k + 1);

}
}
return part_iter (b, 1);

}

Think about it...
Problem?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 49 / 90

Recursion

(Not so) fast power 2

// This version gives rise to an iterative process .
function not_so_fast_power (b, n) {

function iter(unit , k, res) {
if (k === n) {

return unit * res;
} else {

return k * 2 <= n ? iter(unit * unit , k * 2, res)
: iter(unit , k + 1, res * b);

}
}
return iter(b, 1, 1);

}

Think about it...
Time/space complexity?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 50 / 90

Recursion

Fibonacci
In mathematics, the Fibonacci numbers are the numbers in the
following integer sequence, called the Fibonacci sequence, and
characterized by the fact that every number after the first two is the
sum of the two preceding ones:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

It is a modern convention that the Fibonacci sequence starts from 0
(rather than 1). So do not be confused by some external resources.
Symbolically, we have

fibo(n) =
{
n, for n ≤ 1
fibo(n − 1) + fibo(n − 2), for n ≥ 2

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 51 / 90

Recursion

Fibonacci 1

// This version gives rise to a recursive process .
function fibo(n) {

return n <= 1 ? n : fibo(n - 1) + fibo(n - 2);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 52 / 90

Recursion

Fibonacci 2

// This version gives rise to an iterative process .
function fibo(n) {

function iter(x, last1 , last2) {
return x > n ? last1

: iter(x + 1, last1 + last2 , last1);
}

return n <= 1 ? n : iter (2, 1, 0);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 53 / 90

Recursion

Fibonacci 3

// You will learn this formula in later chapters of CS1231 .
function fibo(n) {

var sqrt5 = Math.sqrt (5);
var ratio = (sqrt5 + 1) / 2;
var term = Math.pow(ratio , n) - Math.pow(ratio , -n);

return term / sqrt5;
}

Think about it...
Correctness?
Time/space complexity?
Tradeoff? Is this meaningful?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 54 / 90

Recursion

Greatest common divisor (GCD)
In mathematics, the greatest common divisor (GCD) of two or more
integers, which are not all zero, is the largest positive integer that
divides each of the integers.
Here, we only consider the case of GCD of two integers.
Symbolically, we have:

∀a, b ∈ Z, d = gcd(a, b)⇔
{
d | a ∩ d | b
∀c ∈ Z, c | a ∩ c | b ⇔ c ≤ d

Notice
GCD is also known as the greatest common factor (GCF), highest
common factor (HCF), greatest common measure (GCM), or highest
common divisor (HCD).

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 55 / 90

Recursion

GCD - the ancient Chinese algorithm
Described in the Chapter 1 of Nine Chapters on the Mathematical
Art. Also called “geng xiang jian sun shu”.
Based on the following relationship

gcd(a, b) = gcd(a − b, b), assuming that a > b

Self reading
The concept of primes and the algorithm for counting the greatest
common divisor in Ancient China. Shaohua Zhang. Click here to read.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 56 / 90

https://arxiv.org/pdf/0910.0095.pdf

Recursion

GCD 1

function gcd(a, b) {
if (a === b) {

return a;
} else {

return a > b ? gcd(a - b, b)
: gcd(a, b - a);

}
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 57 / 90

Recursion

GCD - the Euclidean algorithm
Described in Book 7 and 10 of Euclid’s Elements, also discovered
indepedently in ancient China and India.
Based on the following relationship

gcd(a, b) = gcd(b, r), where r is the remainder of a/b

Significance
“[The Euclidean algorithm] is the granddaddy of all algorithms, because it
is the oldest non-trivial algorithm that has survived to the present day.”

Donald Knuth, The Art of Computer Programming, 2nd edition (1981),
Vol. 2: Seminumerical Algorithms, p. 318.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 58 / 90

Recursion

GCD 2

// Pre - condition : a > b.
function gcd(a, b) {

return b === 0 ? a
: gcd(b, a % b);

}

Think about it...
Correctness?
Time/space complexity?

Is this faster or slower?
Compare the actual performance of the computer when doing division
and subtraction.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 59 / 90

Recursion

Least common multiple (LCM)
In mathematics, the least common multiple (LCM) of two or more
integers, which are all not zero, is the smallest positive integer that is
divisible by each of the integers.
Here, we only consider the case of LCM of two integers.
Symbolically, we have:

∀a, b ∈ Z, d = lcm(a, b)⇔
{
a | d ∩ b | d
∀c ∈ Z, a | c ∩ b | c ⇔ c ≥ d

Notice
LCM is also known as the lowest common multiple (also LCM), or
smallest common multiple (SCM).

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 60 / 90

Recursion

LCM 1

// Assume we do not the relationship between a and b.
function lcm(a, b) {

function iter(x, y) {
if (x === y) {

return x;
} else {

return x > y ? iter(x, y + b)
: iter(x + a, y);

}
}
return iter(a, b);

}

Think about it...
Correctness?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 61 / 90

Recursion

LCM 2

function lcm(a, b) {
return a * b / gcd(a, b);

}

To understand...
lcm(a, b) = |a·b|

gcd(a,b)

Think about it...
Time/sapce complexity?

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 62 / 90

Recursion

Exercises of recursion
Digit sum
Multiple of 9
Palindrome
Super-fibonacci
Staircases

Your task today
Try to answer all of these problems.
Try to give both the recursive and iterative version.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 63 / 90

Recursion

1. Digit sum
Given a non-negative integer, find the sum of all its digits. Your function
name should be sum_of_digits.

Examples
sum_of_digits(0) returns 0.
sum_of_digits(12965) returns 23.
sum_of_digits(70263) returns 18.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 64 / 90

Recursion

2. Multiple of 9
A number is a multiple of 9 if and only if its sum_of_digits is a multiple
of 9. Using this fact, create a function to check whether a non-negative
number is a multiple of 9. Notice that you MUST NOT use % 9.Your
function name should be is_multiple_of_9.

Examples
is_multiple_of_9(0) returns true.
is_multiple_of_9(12965) returns false.
is_multiple_of_9(70263) returns true.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 65 / 90

Recursion

3. Palindrome 1
Given a non-negative integer, when the order of all its digits is reversed,
we get its palindrome. Create a function to find the palindrome. Your
function name should be palindrome.
Notice: the return value of your function must be integer (rather than
string), you are also not allowed to use explicit data type conversion.

Examples
palindrome(0) returns 0.
palindrome(15687) returns 78651.
palindrome(32523) returns 32523.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 66 / 90

Recursion

4. Palindrome 2
Given a non-negative integer, it is palindromic if its palindrome and itself
is equal. Create a function to check whether a number is palindromic.
Your function name should be is_palindromic.

Examples
is_palindromic(0) returns true.
is_palindromic(15687) returns false.
is_palindromic(32523) returns true.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 67 / 90

Recursion

5. Super-fibonacci
Given the following recurrence relationship,

f (n) =
{
2 · n + 1, for n ≤ 2
3 · f (n − 1) + 2 · f (n − 2) + f (n − 3), for n > 3

create a function to find the nth term. Your function name should be
calculate_f.

Examples
calculate_f(0) returns 1.
calculate_f(1) returns 3.
calculate_f(3) returns 22.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 68 / 90

Recursion

6. Staircase
We can use blocks to create a staircase. However, not every combination
of blocks can become a staircase. To build a staircase, the height of each
column should be strictly descending (from left to right).
Following are some examples of valid staircases:

Following are some examples of invalid staircases:

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 69 / 90

Recursion

6. Staircase
Create a function to count the number of possible valid staircases using a
given number of blocks. Notice that all of the blocks have to be used.
You can assume the input is positive. Your function name should be
staircase.

Examples
staircase(1) returns 1.
staircase(2) returns 1.
staircase(3) returns 2.
staircase(4) returns 2.
staircase(5) returns 3.
staircase(6) returns 4.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 70 / 90

Overview

1 Review of abstraction
From last week
A good abstraction
Scoping

2 Recursion
To understand recursion
To use recursion
Examples
Exercises

3 Order of growth
To understand order of growth
Exercises

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 71 / 90

Order of Growth

Big theta, oh, omega
Big theta Θ: tight bound (both sides);
Big oh O: upper bound;
Big omega Ω: lower bound.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 72 / 90

Order of Growth

Formal definition
The function r has an order of growth Θ(g(n)) if there exists positive
constants k1 and k2 and a number n0 such that

k1 · g(n) ≤ r(n) ≤ k2 · g(n), ∀n > n0

The function r has an order of growth O(g(n)) if there exists a
positive constant k and a number n0 such that

r(n) ≤ k · g(n), ∀n > n0

The function r has an order of growth Ω(g(n)) if there exists a
positive constant k and a number n0 such that

k · g(n) ≤ r(n), ∀n > n0

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 73 / 90

Order of Growth

How to find order of growth
You only need to follow two steps:

Analyse the recurrence relationship.
Calculate the asymptotic notation of that relationship.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 74 / 90

Order of Growth

Order of growth in CS1101S...
For the interest of examination-oriented or grade-oriented, you do not need
to use either recurrence tree method or Master Theorem method.

How to tackle this kind of problems easily
Remember a few commonly-used asymptotic notation:

1, log n, n, n · log n, nk , 2n, ...

For polynomials, only consider the term with the highest order (ignore
minor terms).
Always neglect constants and set the coefficient as 1.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 75 / 90

Order of Growth

Exercises
In the following slides, you are going to see a few programs.
Use whatever method you have learnt (or guess), find out their order
of growth in time and space.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 76 / 90

Order of Growth

Exercise 1

function a(n) {
if (n < 0) {

return 0;
} else {

return a(n - 1);
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 77 / 90

Order of Growth

Exercise 2

function b(n) {
if (n < 0) {

return 0;
} else {

return b(n - 1) + 2;
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 78 / 90

Order of Growth

Exercise 3

function c(n) {
if (n < 1) {

return 0;
} else {

return c(n / 2);
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 79 / 90

Order of Growth

Exercise 4

function d(n) {
if (n < 0) {

return 0;
} else {

return d(n / 3);
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 80 / 90

Order of Growth

Exercise 5

function e(n) {
var k = n / 3;

function iter(n) {
return n < 0 ? 0 : iter(n - k);

}

return iter(n);
}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 81 / 90

Order of Growth

Exercise 6

function f(n) {
if(n < 0) {

return 0;
} else {

return f(n - 1) + f(n - 1);
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 82 / 90

Order of Growth

Exercise 7

function g(n) {
if(n < 0) {

return 0;
} else {

return g(n - 1) * 2;
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 83 / 90

Order of Growth

Exercise 8

function h(n) {
if(n < 0) {

return 0;
} else {

return h(n / 2) + h(n / 2);
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 84 / 90

Order of Growth

Exercise 9

function i(n) {
if(n < 0) {

return 0;
} else {

return i(n / 2) * 2;
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 85 / 90

Order of Growth

Exercise 10

function j(n) {
var k = Math.sqrt(n);

function iter(n) {
return n < 0 ? 0 : iter(n - k);

}

return iter(n);
}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 86 / 90

Order of Growth

Exercise 11

function k(n) {
var k = Math.log(n);

function iter(n) {
return n < 0 ? 0 : iter(n - k);

}

return iter(n);
}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 87 / 90

Order of Growth

Exercise 12

function l(n) {
function fibo(x) {

return x < 2 ? x : fibo(x - 1) + fibo(x - 2);
}

return n === 0 ? 0 : fibo(n) + l(n - 1);
}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 88 / 90

Discussion Group Problems

Let’s discuss them now.

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 89 / 90

End

The End

Niu Yunpeng CS1101S DG Week 3 August 29, 2017 90 / 90

	Review of abstraction
	From last week
	A good abstraction
	Scoping

	Recursion
	To understand recursion
	To use recursion
	Examples
	Exercises

	Order of growth
	To understand order of growth
	Exercises

