
Welcome

CS1101S Discussion Group Week 4:
Recursion & Higher-order Programming

Niu Yunpeng

niuyunpeng@u.nus.edu

September 5, 2017

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 1 / 58

Overview

1 More about recursion
From last week
Examples

2 Higher-order programming
Before we start
To understand higher-order programming
To use higher-order programming
Exercises

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 2 / 58

More about Recursion

A few terms so far
Primitives/combination/abstraction
Recursive/iterative function
Recursive/iterative process

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 3 / 58

More about Recursion

Two approaches
We have two general approaches to solve a really large problem:

Bottom-up approach: begin with all the smallest units of this problem
and combine them together.
Top-down approach: repeatedly divide a larger problem into several
smaller problems and “wish” these sub-problems could be solved.

Two programming styles
Iteration: the bottom-up approach;
Recursion: the top-down approach.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 4 / 58

More about Recursion

To understand recursion
Use substitution model.

Substitution model
To use substitution model on understanding a function:

Evaluate all actual arguments;
Replace all formal parameters with their actual arguments;
Apply each statement in the function body (and get the return value);
Repeat the first 3 steps until done.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 5 / 58

Recursion

Classical examples of recursion
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change
Permutation / combination
...

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 6 / 58

Recursion

Examples in Week 3 slides
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 7 / 58

Recursion

Examples in Week 4 slides
Hanoi tower
Coin change

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 8 / 58

Recursion

Hanoi tower
Given: a tower consisting of disks in increasing size;
Goal: move all disks from A to B with the help of C;
Constraint: never put a larger disk on top of a smaller one.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 9 / 58

Recursion

Recursion for Hanoi tower
Base case: move 2 disks from A to B with the help of C.
Scale: n disks.
Sub-problem: how to solve the problems of n − 1 disks.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 10 / 58

Recursion

Hanoi tower

function hanoi(size , from , to , extra) {
if (size === 0) {

;
} else {

hanoi(size - 1, from , extra , to);
move_disk (from , to);
hanoi(size - 1, extra , to , from);

}
}

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 11 / 58

Recursion

An interesting concern
When I used to be a student in CS1101S, I am confused by
display ("move from " + from + " to " + to);

Why do we need it?

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 12 / 58

Recursion

Answer
It is used to print the solution of the hanoi tower in the Source
Playground.
In the online demo for Hanoi tower, they are replaced by the graphic
animation.
Anyway, it is just a way to tell you that, the top disk will be moved
from somewhere to elsewhere. Therefore, I make the abstraction
move_disk (from , to);

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 13 / 58

Recursion

Coin change
Given: a set of unlimited coins (however limited number of kinds);
Given also: a specific amount of money in cents;
Goal: find the number of ways to change this amount into coins.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 14 / 58

Recursion

Recursion for coin change
Base case: the amount of money left is 0, which means a valid way to
make the changes.
Scale: the amount of money left in cents.
Sub-problem: to use the same kind or a new kind.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 15 / 58

Recursion

Recursion for coin change
Base case: the amount of money left is 0, which means a valid way to
make the changes.
Scale: the amount of money left in cents.
Sub-problem: to use the same kind or a new kind.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 16 / 58

Recursion

Coin change

function coin_change (amount , kind) {
if (amount === 0) {

return 1;
} else if (amount < 0 || kind === 0) {

return 0;
} else {

return coin_change (amount , kind - 1) +
coin_change (amount - value(kind), kind);

}
}

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 17 / 58

Recursion

Coin change

function value(kind) {
if (kind === 1) {

return 5;
} else if (kind === 2) {

return 10;
} else if (kind === 3) {

return 20;
} else if (kind === 4) {

return 50;
} else if (kind === 5) {

return 100;
} else {

display (" invalid coin");
}

}

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 18 / 58

Recursion

What is coin change really about?
It is to count the number of ways we can solve a problem.
In fact, it is to count the number of leaves in a decision tree.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 19 / 58

Recursion

What is coin change really about?
It is to count the number of ways we can solve a problem.
In fact, it is to count the number of leaves in a decision tree.

What?
Unbelievable! We are learning part of the simplest form of machine
learning or so-called artificial intelligence (AI).

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 20 / 58

Recursion

AlphaGo vs Lee Sedol last year

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 21 / 58

Recursion

Recommended modules at SoC
CS3243(R) Introduction to Artificial Intelligence
CS3244 Machine Learning
CS5339 Theory and Algorithms for Machine Learning
CS5340 Uncertainty Modelling in AI

Caution
Very hard modules;
Need strong mathematical foundations.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 22 / 58

Recursion

Examples we have learn so far...
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change

One thing left...
Permutation / combination

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 23 / 58

Overview

1 More about recursion
From last week
Examples

2 Higher-order programming
Before we start
To understand higher-order programming
To use higher-order programming
Exercises

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 24 / 58

Higher-order Programming

Before we start...
We need to mention a few things before we start:

How to check the correctness of a program;
Revisit of variable scoping;
Why we can do higher-order programming in JavaScript?

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 25 / 58

Higher-order Programming

How to check the correctness of a program
Invariant
Termination

Base case(s)
Finite time/space complexity

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 26 / 58

Higher-order Programming

Order of growth exercise from last week

function d(n) {
if (n < 0) {

return 0;
} else {

return d(n / 3);
}

}

d(10);

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 27 / 58

Higher-order Programming

Revisit of variable scoping
System functions or variables are visible everywhere.
A function or variable is visible within the closest surrounding curly
braces where it is declared. Or it will be visible in the whole program
if none (top-level varaibles, or global variables).
Formal parameters are visible within the function body to which it
belongs.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 28 / 58

Higher-order Programming

Exercises of variable scoping
Find out the output of each program, and
Explain the reason.

Importance
Friday Test - Analytical Reading 1

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 29 / 58

Higher-order Programming

Exercise 1

var x = 5;

function f(x) {
return x;

}

f(3);

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 30 / 58

Higher-order Programming

Exercise 2

var x = 5;

function f(x) {
function g() {

return x;
}

return g();
}

f(x);

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 31 / 58

Higher-order Programming

Before we move on...
We claimed that “Pre-declared built-in functions or variables are
visible everywhere.”
So, what are “Pre-declared built-in functions or variables”?

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 32 / 58

Higher-order Programming

Core built-in functions
display

alert

prompt

parseInt

A few keywords
undefined

Infinity

-Infinity

NaN

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 33 / 58

Higher-order Programming

Mathematical library - functions
math_abs(x)

math_sin(x) math_cos(x) math_tan(x)

math_asin(x) math_acos(x) math_atan(x) math_atan2(y, x)

math_floor(x) math_ceil(x) math_round(x)

math_max(a, b, ...) math_min(a, b, c, ...)

math_pow(x, y) math_exp(x)

math_sqrt(x)

math_log(x) math_log10(x) math_log2(x)

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 34 / 58

Higher-order Programming

Mathematical library - constants
math_E

math_PI

math_SQRT2

math_SQRT1_2

math_LN10

math_LN2

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 35 / 58

Higher-order Programming

Things...
Variables can be functions.
Parameters can be functions.
Return values can be functions.

Result...
That’s all about higher-order programming.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 36 / 58

Higher-order Programming

Original version

function fact(n) {
// By definition , the factorial of 0 is 1.
return n === 0 ? 1 : fact(n - 1) * n;

}

Notice
This version gives rise to a recursive process.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 37 / 58

Higher-order Programming

Abstract the multiplication

function make_multiplier (x) {
return function (y) {

return x * y;
};

}

var multiply_by_4 = make_multiplier (4);
multiply_by_4 (5);

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 38 / 58

Higher-order Programming

Using the abstraction of multiplication

function fact(n) {
if (n === 0) {

return 1;
} else {

return (make_multiplier (n))(fact(n - 1));
}

}

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 39 / 58

Higher-order Programming

Abstract the sub-problem relationship

function product (term , next , upper , lower) {
if (upper <= lower) {

return 1;
} else {

return term(upper) *
product (term , next , next(upper), lower);

}
}

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 40 / 58

Higher-order Programming

Abstract the relationship again

function product (term , next , terminate , now) {
if (terminate (now)) {

return 1;
} else {

return term(now) *
product (term , next , terminate , next(now));

}
}

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 41 / 58

Higher-order Programming

Think about it carefully...
Three key aspects for a recursive function:

Base case(s)
Scale
Sub-problem(s)

Three functions as parameters for product:
terminate

term

next

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 42 / 58

Higher-order Programming

Using the abstraction for sub-problem relationship

function fact(n) {
return product (function (x) { return x; },

function (x) { return x - 1; },
function (x) { return x <= 0; },
n);

}

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 43 / 58

Higher-order Programming

What about this?
1 + 2 + · · · + n
1 × 2 × · · · × n
For these two different series, what is in common?

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 44 / 58

Higher-order Programming

Abstract the multiplication and sub-problem relationship

function accum(term , next , terminate , operation , now) {
if (terminate (now)) {

return 1;
} else {

return operation (term(now),
accum(term , next , terminate ,

operation , next(now)));
}

}

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 45 / 58

Higher-order Programming

Once again

function accum(term , next , terminate , oper , base , now) {
if (terminate (now)) {

return base ();
} else {

return oper(term(now),
accum(term , next , terminate , oper ,

base , next(now)));
}

}

Think about it...
What changes?

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 46 / 58

Higher-order Programming

Using everything together

function fact(n) {
return accum(function (x) { return x; },

function (x) { return x - 1; },
function (x) { return x <= 0; },
function (x, y) { return x * y; },
function () { return 1; },
n);

}

Think about it...
What changes?

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 47 / 58

Higher-order Programming

Your task today...
Does this function gives rise to a recursive or iterative process?
If it gives rise to a recursive process, can you change it into an
iterative process?

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 48 / 58

Higher-order Programming

Notice
In the following slides, you are going to see a few problems.
They are selected from past year papers.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 49 / 58

Higher-order Programming

Exercise 1
You are given the function below called strict. Consider a restricted
version of Source, in which each function is only allowed to have at most 1
parameter. Find out how to define strict under this constraint.
function strict (a, b, c) {

return a * b + c;
}

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 50 / 58

Higher-order Programming

Exercise 2

function plus_one (x) {
return x + 1;

}

function trans(func) {
return function (x) {

return 2 * func(x * 2);
};

}

function twice(func) {
return function (x) {

return func(func(x));
};

}

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 51 / 58

Higher-order Programming

Exercise 2
Given the three functions in the last slide, try to find out the output of the
following programs:

((twice(trans))(plus_one))(1);

((twice(trans(plus_one))))(1);

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 52 / 58

Higher-order Programming

Exercise 3
According to the substitution model of execution, a process can be
said to exhaust all time resources if it keeps evaluating and never
reaches any result value.
Also, a process can be said to exhaust all space resources if it keeps
growing while it evaluates sub-expressions, i.e. the number of sub-
expressions and deferred operations will keep growing.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 53 / 58

Higher-order Programming

Exercise 3
For the following programs, find out whether they will exhause time or
space resources (or both):

1) Will it exhaust time/space resources or both?
function loop(x) {

return loop(x);
}
loop (0);

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 54 / 58

Higher-order Programming

Exercise 3
For the following programs, find out whether they will exhause time or
space resources (or both):

2) Will it exhaust time/space resources or both?
function loop2(x) {

return loop2(loop2(x));
}
loop2 (0);

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 55 / 58

Higher-order Programming

Exercise 3
For the following programs, find out whether they will exhause time or
space resources (or both):

3) Will it exhaust time/space resources or both?
function recur(x) {

return x(x);
}
recur(function (x) { return x(x(x)); });

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 56 / 58

Discussion Group Problems

Let’s discuss them now.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 57 / 58

End

The End

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 58 / 58

	More about recursion
	From last week
	Examples

	Higher-order programming
	Before we start
	To understand higher-order programming
	To use higher-order programming
	Exercises

