CS1101S Discussion Group Week 4:
Recursion & Higher-order Programming

Niu Yunpeng

Niu Yunpeng
niuyunpeng®@u.nus.edu

September 5, 2017

CS1101S DG Week 4

September 5, 2017

1/

58

Overview

@ More about recursion
o From last week
@ Examples

Niu Yunpeng CS1101S DG Week 4 September 5, 2017

More about Recursion

A few terms so far

@ Primitives/combination/abstraction
@ Recursive/iterative function

@ Recursive/iterative process

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 3 /58

More about Recursion

Two approaches

We have two general approaches to solve a really large problem:
@ Bottom-up approach: begin with all the smallest units of this problem
and combine them together.

@ Top-down approach: repeatedly divide a larger problem into several
smaller problems and “wish” these sub-problems could be solved.

Two programming styles
@ [teration: the bottom-up approach;

@ Recursion: the top-down approach.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 4 /58

More about Recursion

To understand recursion

o Use substitution model.

Substitution model

To use substitution model on understanding a function:
Evaluate all actual arguments;
Replace all formal parameters with their actual arguments;

o
o
@ Apply each statement in the function body (and get the return value);
o

Repeat the first 3 steps until done.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 5 /58

Recursion

Classical examples of recursion

o Factorial

Square root

Power function

Fibonacci

Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower

Coin change

Permutation / combination

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 6 /58

Recursion

Examples in Week 3 slides

o Factorial

@ Square root
Power function
Fibonacci

Greatest common divisor (GCD)

Least common multiple (LCM)

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 7 /58

Recursion

Examples in Week 4 slides

@ Hanoi tower

@ Coin change

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 8 /58

Recursion

Hanoi tower

@ Given: a tower consisting of disks in increasing size;
@ Goal: move all disks from A to B with the help of C;

o Constraint: never put a larger disk on top of a smaller one.

=11

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 9 /58

Recursion

Recursion for Hanoi tower

@ Base case: move 2 disks from A to B with the help of C.
@ Scale: n disks.

@ Sub-problem: how to solve the problems of n — 1 disks.

=11

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 10 / 58

Recursion

anoi tower

function hanoi(size, from, to, extra) {
if (size === 0) {
} else {
hanoi(size - 1, from, extra, to);
move_disk (from, to);
hanoi(size - 1, extra, to, from);
}
}
v

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 11 / 58

Recursion

An interesting concern
@ When | used to be a student in CS1101S, | am confused by

display("move from " + from + " to " + to);

e Why do we need it?

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 12 / 58

Recursion

Answer

@ It is used to print the solution of the hanoi tower in the Source
Playground.

@ In the online demo for Hanoi tower, they are replaced by the graphic
animation.

@ Anyway, it is just a way to tell you that, the top disk will be moved
from somewhere to elsewhere. Therefore, | make the abstraction

move_disk (from, to);

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 13 / 58

Recursion

Coin change

@ Given: a set of unlimited coins (however limited number of kinds);
@ Given also: a specific amount of money in cents;

o Goal: find the number of ways to change this amount into coins.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 14 / 58

Recursion

Recursion for coin change

@ Base case: the amount of money left is 0, which means a valid way to
make the changes.

@ Scale: the amount of money left in cents.

@ Sub-problem: to use the same kind or a new kind.

N

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 15 / 58

Recursion

Recursion for coin change

@ Base case: the amount of money left is 0, which means a valid way to
make the changes.

@ Scale: the amount of money left in cents.

@ Sub-problem: to use the same kind or a new kind.

N

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 16 / 58

Recursion

function coin_change (amount, kind) {
if (amount === 0) {
return 1;
} else if (amount < 0 || kind === 0) {
return O;
} else {
return coin_change (amount, kind - 1) +
coin_change (amount - value(kind), kind);
}
}

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 17 / 58

Recursion

function value(kind) {
if (kind === 1) {
return 5;

} else if (kind === 2) {
return 10;

} else if (kind === 3) {
return 20;

} else if (kind === 4) {
return 50;

} else if (kind === 5) {

return 100;
} else {
display("invalid coin");

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 18 / 58

Recursion

What is coin change really about?

@ It is to count the number of ways we can solve a problem.

@ In fact, it is to count the number of leaves in a decision tree.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 19 / 58

Recursion

What is coin change really about?

@ It is to count the number of ways we can solve a problem.

@ In fact, it is to count the number of leaves in a decision tree.

@ Unbelievable! We are learning part of the simplest form of machine
learning or so-called artificial intelligence (Al).

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 20 / 58

Recursion

AlphaGo vs Lee Sedol last year

e0e .
+©: Google DeepMind
A Challenge Match

8 - 15 March 2016

Niu Yunpeng CS1101S DG Week 4

{03 AlphaGo

September 5, 2017

21 /58

Recursion

Recommended modules at SoC

@ CS3243(R) Introduction to Artificial Intelligence

e (CS3244 Machine Learning

@ (CS5339 Theory and Algorithms for Machine Learning
@ (CS5340 Uncertainty Modelling in Al

@ Very hard modules;

@ Need strong mathematical foundations.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 22 /58

Recursion

Examples we have learn so far...

Factorial

Square root
Power function

Fibonacci

Least common multiple (LCM)

°
°
°
o Greatest common divisor (GCD)
°
@ Hanoi tower

°

Coin change

One thing left...

@ Permutation / combination

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 23 /58

© Higher-order programming
o Before we start
@ To understand higher-order programming
@ To use higher-order programming
@ Exercises

Niu Yunpeng CS1101S DG Week 4

September 5, 2017

24 / 58

Higher-order Programming

Before we start...

We need to mention a few things before we start:
@ How to check the correctness of a program;
@ Reuvisit of variable scoping;

@ Why we can do higher-order programming in JavaScript?

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 25 / 58

Higher-order Programming

How to check the correctness of a program

@ Invariant
@ Termination

e Base case(s)
o Finite time/space complexity

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 26 / 58

Higher-order Programming

Order of growth exercise from last week

function d(n) {
if (n < 0) {
return O;
} else {
return d(n / 3);
}

d(10) ;

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 27 / 58

Higher-order Programming

@ System functions or variables are visible everywhere.

@ A function or variable is visible within the closest surrounding curly
braces where it is declared. Or it will be visible in the whole program

if none (top-level varaibles, or global variables).

o Formal parameters are visible within the function body to which it

belongs.

Revisit of variable scoping

Niu Yunpeng CS1101S DG Week 4

September 5, 2017

28 / 58

Higher-order Programming

Exercises of variable scoping

@ Find out the output of each program, and

@ Explain the reason.

Importance
o Friday Test - Analytical Reading 1

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 29 / 58

Higher-order Programming

Exercise 1

var x = b;

function f(x) {
return Xx;

}

£(3);

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 30 /58

Higher-order Programming

Exercise 2
var x = 5;
function f(x) {
function g() {
return x;

}

return g();

f(x);

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 31 /58

Higher-order Programming

Before we move on...

@ We claimed that "“Pre-declared built-in functions or variables are
visible everywhere.”

@ So, what are “Pre-declared built-in functions or variables”?

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 32 /58

Higher-order Programming

Core built-in functions
@ display

@ alert
@ prompt

@ parselnt

A few keywords

@ undefined
@ Infinity
@ -Infinity
@ NaN

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 33 /58

Higher-order Programming

Mathematical library - functions

@ math_abs(x)

@ math_sin(x) math_cos(x) math_tan(x)

@ math_asin(x) math_acos(x) math_atan(x) math_atan2(y, x)
@ math_floor(x) math_ceil(x) math_round(x)

@ math max(a, b, ...) math min(a, b, c, ...)

@ math_pow(x, y) math_exp(x)

@ math_sqrt(x)

@ math_log(x) math_loglO(x) math_log2(x)

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 34 /58

Higher-order Programming

Mathematical library - constants

@ math E

@ math_PI
math_SQRT2
math_SQRT1_2
math_LN10
math_LN2

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 35 /58

Higher-order Programming

@ Variables can be functions.

@ Parameters can be functions.

@ Return values can be functions.

@ That's all about higher-order programming.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 36 / 58

Higher-order Programming

Original version

function fact(n) {
// By definition, the factorial of 0 is 1.
return n === 0 ? 1 : fact(n - 1) * n;

@ This version gives rise to a recursive process.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 37 /58

Higher-order Programming

Abstract the multiplication

function make_multiplier(x) {
return function(y) {
return x * y;
};
}

var multiply_by_4 = make_multiplier (4);
multiply_by_4(5);

Niu Yunpeng CS1101S DG Week 4

September 5, 2017

38 / 58

Higher-order Programming

Using the abstraction of multiplication

function fact(n) {

if (n === 0) {
return 1;
} else {

return (make_multiplier(mn)) (fact(n - 1));
}

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 39 /58

r Programming

Abstract the sub-problem relationship

function product(term, next, upper, lower) {
if (upper <= lower) {
return 1;
} else {
return term(upper) *
product (term, next, next(upper), lower);

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 40 / 58

Higher-order Programming

Abstract the relationship again

function product(term, next, terminate, now) {
if (terminate (now)) {
return 1;
} else {
return term(now) *

product (term, next, terminate, next (now));

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 41 /58

Higher-order Programming

Think about it carefully...

Three key aspects for a recursive function:
o Base case(s)
@ Scale

@ Sub-problem(s)

Three functions as parameters for product:
@ terminate

@ term

@ next

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 42 / 58

Higher-order Programming

Using the abstraction for sub-problem relationship

function fact(n) {
return product (function(x) { return x; 1},
function(x) { return x - 1; },
function(x) { return x <= 0; 1},
n);
}
v
Niu Yunpeng CS1101S DG Week 4

September 5, 2017 43 / 58

Higher-order Programming

What about this?

@1+2+---+n
@1x2x---Xn

@ For these two different series, what is in common?

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 44 / 58

Higher-order Programming

Abstract the multiplication and sub-problem relationship

function accum(term, next, terminate, operation, now) {
if (terminate (now)) {
return 1;
} else {
return operation(term(now),
accum(term, next, terminate,
operation, next(now)));

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 45 / 58

Higher-order Programming

Once again

function accum(term, next,
if (terminate (now)) {
return base () ;
} else {
return oper (term(now),
accum(term, next, terminate,
base, next(now)));

terminate, oper, base, now) {

oper,

Think about it...

@ What changes?

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 46 / 58

Higher-order Programming

Using everything together

function fact(n) {
return accum(function(x) { return x; 1},
function(x) { return x - 1; },
function(x) { return x <= 0; 1},
function(x, y) { return x * y; },
function() { return 1; },
n);

Think about it...
@ What changes?

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 47 / 58

Higher-order Programming

Your task today...

@ Does this function gives rise to a recursive or iterative process?

o If it gives rise to a recursive process, can you change it into an
iterative process?

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 48 / 58

Higher-order Programming

@ In the following slides, you are going to see a few problems.

@ They are selected from past year papers.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 49 / 58

Higher-order Programming

Exercise 1

You are given the function below called strict. Consider a restricted
version of Source, in which each function is only allowed to have at most 1
parameter. Find out how to define strict under this constraint.
function strict(a, b, c) {

return a * b + c;

}

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 50 / 58

Higher-order Programming

Exercise 2

function plus_one(x) {
return x + 1;

}

function trans(func) {
return function(x) {
return 2 * func(x * 2);
i
}

function twice (func) {
return function(x) {
return func (func(x));

¥8

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 51 /58

Higher-order Programming

Given the three functions in the last slide, try to find out the output of the
following programs:

o ((twice(trans)) (plus_one))(1);
o ((twice(trans(plus_one))))(1);

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 52 / 58

Higher-order Programming

Exercise 3

@ According to the substitution model of execution, a process can be
said to exhaust all time resources if it keeps evaluating and never
reaches any result value.

@ Also, a process can be said to exhaust all space resources if it keeps
growing while it evaluates sub-expressions, i.e. the number of sub-
expressions and deferred operations will keep growing.

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 53 / 58

Higher-order Programming

Exercise 3

For the following programs, find out whether they will exhause time or
space resources (or both):

1) Will it exhaust time/space resources or both?

function loop(x) {
return loop(x);

}

loop (0) ;

Niu Yunpeng CS1101S DG Week 4 September 5, 2017

54 / 58

Higher-order Programming

Exercise 3

For the following programs, find out whether they will exhause time or
space resources (or both):

2) Will it exhaust time/space resources or both?

function loop2(x) {

return loop2(loop2(x));
}
loop2(0);

Niu Yunpeng CS1101S DG Week 4 September 5, 2017

55 / 58

Higher-order Programming

Exercise 3

For the following programs, find out whether they will exhause time or
space resources (or both):

3) Will it exhaust time/space resources or both?

function recur(x) {
return x(x);
}

recur (function(x) { return x(x(x)); });

Niu Yunpeng CS1101S DG Week 4 September 5, 2017

56 / 58

Discussion Group Problems

Let’s discuss them now.

CS1101S DG Week 4 September 5, 2017 57 / 58

The End

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 58 / 58

	More about recursion
	From last week
	Examples

	Higher-order programming
	Before we start
	To understand higher-order programming
	To use higher-order programming
	Exercises

