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More about Recursion

A few terms so far
Primitives/combination/abstraction
Recursive/iterative function
Recursive/iterative process
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More about Recursion

Two approaches
We have two general approaches to solve a really large problem:

Bottom-up approach: begin with all the smallest units of this problem
and combine them together.
Top-down approach: repeatedly divide a larger problem into several
smaller problems and “wish” these sub-problems could be solved.

Two programming styles
Iteration: the bottom-up approach;
Recursion: the top-down approach.
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More about Recursion

To understand recursion
Use substitution model.

Substitution model
To use substitution model on understanding a function:

Evaluate all actual arguments;
Replace all formal parameters with their actual arguments;
Apply each statement in the function body (and get the return value);
Repeat the first 3 steps until done.
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Recursion

Classical examples of recursion
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change
Permutation / combination
...
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Recursion

Examples in Week 3 slides
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
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Recursion

Examples in Week 4 slides
Hanoi tower
Coin change
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Recursion

Hanoi tower
Given: a tower consisting of disks in increasing size;
Goal: move all disks from A to B with the help of C;
Constraint: never put a larger disk on top of a smaller one.
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Recursion

Recursion for Hanoi tower
Base case: move 2 disks from A to B with the help of C.
Scale: n disks.
Sub-problem: how to solve the problems of n − 1 disks.
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Recursion

Hanoi tower

function hanoi(size , from , to , extra) {
if (size === 0) {

;
} else {

hanoi(size - 1, from , extra , to);
move_disk (from , to);
hanoi(size - 1, extra , to , from);

}
}
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Recursion

An interesting concern
When I used to be a student in CS1101S, I am confused by
display ("move from " + from + " to " + to);

Why do we need it?
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Recursion

Answer
It is used to print the solution of the hanoi tower in the Source
Playground.
In the online demo for Hanoi tower, they are replaced by the graphic
animation.
Anyway, it is just a way to tell you that, the top disk will be moved
from somewhere to elsewhere. Therefore, I make the abstraction
move_disk (from , to);
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Recursion

Coin change
Given: a set of unlimited coins (however limited number of kinds);
Given also: a specific amount of money in cents;
Goal: find the number of ways to change this amount into coins.
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Recursion

Recursion for coin change
Base case: the amount of money left is 0, which means a valid way to
make the changes.
Scale: the amount of money left in cents.
Sub-problem: to use the same kind or a new kind.
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Recursion

Recursion for coin change
Base case: the amount of money left is 0, which means a valid way to
make the changes.
Scale: the amount of money left in cents.
Sub-problem: to use the same kind or a new kind.
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Recursion

Coin change

function coin_change (amount , kind) {
if ( amount === 0) {

return 1;
} else if ( amount < 0 || kind === 0) {

return 0;
} else {

return coin_change (amount , kind - 1) +
coin_change ( amount - value(kind), kind);

}
}
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Recursion

Coin change

function value(kind) {
if (kind === 1) {

return 5;
} else if (kind === 2) {

return 10;
} else if (kind === 3) {

return 20;
} else if (kind === 4) {

return 50;
} else if (kind === 5) {

return 100;
} else {

display (" invalid coin");
}

}
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Recursion

What is coin change really about?
It is to count the number of ways we can solve a problem.
In fact, it is to count the number of leaves in a decision tree.
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Recursion

What is coin change really about?
It is to count the number of ways we can solve a problem.
In fact, it is to count the number of leaves in a decision tree.

What?
Unbelievable! We are learning part of the simplest form of machine
learning or so-called artificial intelligence (AI).
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Recursion

AlphaGo vs Lee Sedol last year
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Recursion

Recommended modules at SoC
CS3243(R) Introduction to Artificial Intelligence
CS3244 Machine Learning
CS5339 Theory and Algorithms for Machine Learning
CS5340 Uncertainty Modelling in AI

Caution
Very hard modules;
Need strong mathematical foundations.
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Recursion

Examples we have learn so far...
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change

One thing left...
Permutation / combination
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Overview

1 More about recursion
From last week
Examples

2 Higher-order programming
Before we start
To understand higher-order programming
To use higher-order programming
Exercises

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 24 / 58



Higher-order Programming

Before we start...
We need to mention a few things before we start:

How to check the correctness of a program;
Revisit of variable scoping;
Why we can do higher-order programming in JavaScript?
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Higher-order Programming

How to check the correctness of a program
Invariant
Termination

Base case(s)
Finite time/space complexity
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Higher-order Programming

Order of growth exercise from last week

function d(n) {
if (n < 0) {

return 0;
} else {

return d(n / 3);
}

}

d(10);

Niu Yunpeng CS1101S DG Week 4 September 5, 2017 27 / 58



Higher-order Programming

Revisit of variable scoping
System functions or variables are visible everywhere.
A function or variable is visible within the closest surrounding curly
braces where it is declared. Or it will be visible in the whole program
if none (top-level varaibles, or global variables).
Formal parameters are visible within the function body to which it
belongs.
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Higher-order Programming

Exercises of variable scoping
Find out the output of each program, and
Explain the reason.

Importance
Friday Test - Analytical Reading 1
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Higher-order Programming

Exercise 1

var x = 5;

function f(x) {
return x;

}

f(3);
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Higher-order Programming

Exercise 2

var x = 5;

function f(x) {
function g() {

return x;
}

return g();
}

f(x);
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Higher-order Programming

Before we move on...
We claimed that “Pre-declared built-in functions or variables are
visible everywhere.”
So, what are “Pre-declared built-in functions or variables”?
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Higher-order Programming

Core built-in functions
display

alert

prompt

parseInt

A few keywords
undefined

Infinity

-Infinity

NaN
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Higher-order Programming

Mathematical library - functions
math_abs(x)

math_sin(x) math_cos(x) math_tan(x)

math_asin(x) math_acos(x) math_atan(x) math_atan2(y, x)

math_floor(x) math_ceil(x) math_round(x)

math_max(a, b, ...) math_min(a, b, c, ...)

math_pow(x, y) math_exp(x)

math_sqrt(x)

math_log(x) math_log10(x) math_log2(x)
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Higher-order Programming

Mathematical library - constants
math_E

math_PI

math_SQRT2

math_SQRT1_2

math_LN10

math_LN2
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Higher-order Programming

Things...
Variables can be functions.
Parameters can be functions.
Return values can be functions.

Result...
That’s all about higher-order programming.
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Higher-order Programming

Original version

function fact(n) {
// By definition , the factorial of 0 is 1.
return n === 0 ? 1 : fact(n - 1) * n;

}

Notice
This version gives rise to a recursive process.
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Higher-order Programming

Abstract the multiplication

function make_multiplier (x) {
return function (y) {

return x * y;
};

}

var multiply_by_4 = make_multiplier (4);
multiply_by_4 (5);
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Higher-order Programming

Using the abstraction of multiplication

function fact(n) {
if (n === 0) {

return 1;
} else {

return ( make_multiplier (n))(fact(n - 1));
}

}
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Higher-order Programming

Abstract the sub-problem relationship

function product (term , next , upper , lower) {
if (upper <= lower) {

return 1;
} else {

return term(upper) *
product (term , next , next(upper), lower);

}
}
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Higher-order Programming

Abstract the relationship again

function product (term , next , terminate , now) {
if ( terminate (now)) {

return 1;
} else {

return term(now) *
product (term , next , terminate , next(now));

}
}
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Higher-order Programming

Think about it carefully...
Three key aspects for a recursive function:

Base case(s)
Scale
Sub-problem(s)

Three functions as parameters for product:
terminate

term

next
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Higher-order Programming

Using the abstraction for sub-problem relationship

function fact(n) {
return product ( function (x) { return x; },

function (x) { return x - 1; },
function (x) { return x <= 0; },
n);

}
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Higher-order Programming

What about this?
1 + 2 + · · · + n
1 × 2 × · · · × n
For these two different series, what is in common?
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Higher-order Programming

Abstract the multiplication and sub-problem relationship

function accum(term , next , terminate , operation , now) {
if ( terminate (now)) {

return 1;
} else {

return operation (term(now),
accum(term , next , terminate ,

operation , next(now)));
}

}
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Higher-order Programming

Once again

function accum(term , next , terminate , oper , base , now) {
if ( terminate (now)) {

return base ();
} else {

return oper(term(now),
accum(term , next , terminate , oper ,

base , next(now)));
}

}

Think about it...
What changes?
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Higher-order Programming

Using everything together

function fact(n) {
return accum( function (x) { return x; },

function (x) { return x - 1; },
function (x) { return x <= 0; },
function (x, y) { return x * y; },
function () { return 1; },
n);

}

Think about it...
What changes?
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Higher-order Programming

Your task today...
Does this function gives rise to a recursive or iterative process?
If it gives rise to a recursive process, can you change it into an
iterative process?
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Higher-order Programming

Notice
In the following slides, you are going to see a few problems.
They are selected from past year papers.
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Higher-order Programming

Exercise 1
You are given the function below called strict. Consider a restricted
version of Source, in which each function is only allowed to have at most 1
parameter. Find out how to define strict under this constraint.
function strict (a, b, c) {

return a * b + c;
}
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Higher-order Programming

Exercise 2

function plus_one (x) {
return x + 1;

}

function trans(func) {
return function (x) {

return 2 * func(x * 2);
};

}

function twice(func) {
return function (x) {

return func(func(x));
};

}
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Higher-order Programming

Exercise 2
Given the three functions in the last slide, try to find out the output of the
following programs:

((twice(trans))(plus_one))(1);

((twice(trans(plus_one))))(1);
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Higher-order Programming

Exercise 3
According to the substitution model of execution, a process can be
said to exhaust all time resources if it keeps evaluating and never
reaches any result value.
Also, a process can be said to exhaust all space resources if it keeps
growing while it evaluates sub-expressions, i.e. the number of sub-
expressions and deferred operations will keep growing.
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Higher-order Programming

Exercise 3
For the following programs, find out whether they will exhause time or
space resources (or both):

1) Will it exhaust time/space resources or both?
function loop(x) {

return loop(x);
}
loop (0);
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Higher-order Programming

Exercise 3
For the following programs, find out whether they will exhause time or
space resources (or both):

2) Will it exhaust time/space resources or both?
function loop2(x) {

return loop2(loop2(x));
}
loop2 (0);
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Higher-order Programming

Exercise 3
For the following programs, find out whether they will exhause time or
space resources (or both):

3) Will it exhaust time/space resources or both?
function recur(x) {

return x(x);
}
recur( function (x) { return x(x(x)); });
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Discussion Group Problems

Let’s discuss them now.
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End

The End
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