
Welcome

CS1101S Discussion Group Week 5:
Data Abstraction & List Processing

Niu Yunpeng

niuyunpeng@u.nus.edu

September 12, 2017

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 1 / 33

Overview

1 Data abstraction
What is data
To understand data structure
To use data structure

2 Pair & list
Pair processing
An “insider” problem
List processing
Exercises

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 2 / 33

Data Abstraction

What is data?
Data is the storage of information.
Two kinds of information: states & procedures.
Procedures are the manipulation of states.

Data in the Source
To represent states: use variables;
To represent procedures: use functions.

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 3 / 33

Data Abstraction

Variables & functions
Variables are data;
Functions are procedures.
Meanwhile, procedures are also data.

Higher-order programming
Variables can be functions.
Parameters can be functions.
Return values can be functions.

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 4 / 33

Data Abstraction

Still remember highest_denom() in lecture notes?

function highest_denom (kind) {
if (kind === 1) {

return 5;
} else if (kind === 2) {

return 10;
} else if (kind === 3) {

return 20;
} else if (kind === 4) {

return 50;
} else if (kind === 5) {

return 100;
} else {

display (" invalid coin");
}

}

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 5 / 33

Data Abstraction

What is highest_denom() about?
We want to know the value for each kind of coins. We certainly can
store them in variables like coinA, coinB, coinC, etc.
However, what if we have too many kinds of coins? We then need a
well-organized structure to store all the information.

What if we have too many kinds of coins?
We then need a well-organized structure to store all the data.

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 6 / 33

Data Abstraction

What is data structure?
Data structure provides us with a well-organized way to store all
related information as a collection.
Data structure should provide functions so that we can arbitrarily
get/change the values inside.

getters
setters

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 7 / 33

Data Abstraction

Data structure & black-box abstraction
Data structure is a black-box.
We can use it to store and retrieve data without knowing things
inside.

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 8 / 33

Data Abstraction

Use data structure with highest_denom
The data structure should at least provide the functions below to use:

initialize(): to initialize a new data structure to store different
kinds of coins and their respective values;
add_new_kind(id, value): to add a new kind of coins to an
existing data structure with a unique identifier and its value;
get_value(id): to get the corresponding value of a certain kind of
coins by its unique identifier.

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 9 / 33

Data Abstraction

To use data structure
Revisit the example on the lecture notes - rationals.
Try to understand how to design and build a tailor-made data
structure for a specific problem.

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 10 / 33

Data Abstraction

Rational numbers
The data structure should at least provide the functions below to use:

make_rat(num, denom): make a rational number with its numerator
and its denominator;
get_num(rat): get the numerator of a rational;
get_denom(rat): get the denominator of a rational;
add_rat(a, b): add two rationals a and b;
sub_rat(a, b): subtract two rationals a and b;
mul_rat(a, b): multiply two rationals a and b;
div_rat(a, b): make a division of two rationals a and b;
equal_rat(a, b): check whether two rationals are equal;
rat_to_string(rat): convert a rational to a string.

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 11 / 33

Data Abstraction

Make a rational number

function make_rat (num , denom) {
var divider = gcd(num , denom);
return pair(num / divider , denom / divider);

}

function get_num (rat) {
return head(rat);

}

function get_denom (rat) {
return tail(rat);

}

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 12 / 33

Data Abstraction

Rational number calculation

function add_rat (a, b) {
return make_rat (get_num (a) * get_denom (b) +

get_num (b) * get_denom (a),
get_denom (a) * get_denom (b));

}

function sub_rat (a, b) {
return make_rat (get_num (a) * get_denom (b) -

get_num (b) * get_denom (a),
get_denom (a) * get_denom (b));

}

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 13 / 33

Data Abstraction

Rational number calculation

function mul_rat (a, b) {
return make_rat (get_num (a) * get_num (b),

get_denom (a) * get_denom (b));
}

function div_rat (a, b) {
return make_rat (get_num (a) * get_denom (b),

get_denom (a) * get_num (b));
}

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 14 / 33

Data Abstraction

Others

function equal_rat (a, b) {
return get_num (a) === get_num (b) &&

get_denom (a) === get_denom (b);
}

function rat_to_string (rat) {
return get_num (rat) + "/" + get_denom (rat);

}

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 15 / 33

Overview

1 Data abstraction
What is data
To understand data structure
To use data structure

2 Pair & list
Pair processing
An “insider” problem
List processing
Exercises

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 16 / 33

Pair & List Processing

Use pair as a data structure
The data structure should at least provide the functions below to use:

pair(x, y): construct a pair with two elements a and b;
head(some_pair): get the first element of a pair;
tail(some_pair): get the second element of a pair;
is_pair(some_pair): check whether an object is a pair.

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 17 / 33

Pair & List Processing

Three ways to represent a pair
Use your code in the Source language;
Use box-and-pointer diagram (as the list visualizer);
Use square brackets (as the output in the interpreter).

Notice
The same applies to list later.

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 18 / 33

Pair & List Processing

Three ways to represent a pair
Use your code in the Source language;
Use box-and-pointer diagram (as the list visualizer);
Use square brackets (as the output in the interpreter).

Example
var x = pair(3, pair(4, 5));

[3, [4, 5]]

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 19 / 33

Pair & List Processing

Consider: make_one_out_of_two

function make_one_out_of_two (a, b) {
return function (oper) {

return oper(a, b);
};

}

function first(pair) {
return pair(function (m, n) { return m; });

}

function second (pair) {
return pair(function (m, n) { return n; });

}

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 20 / 33

Pair & List Processing

From pair to list
Sometimes, we need to store more than 2 variables in a data
structure.
Without list, we have to

pair(3, pair(1, pair(4, pair(1, pair(5, ...)))));

With list, we only need to
list(3, 1, 4, 1, 5, ...);

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 21 / 33

Pair & List Processing

Formal definition
A list is either an empty list or a pair whose tail is a list.

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 22 / 33

Pair & List Processing

Use list as a data structure
Up to now, we have the following functions to use:

list(x, y, z, ...): construct a list with n elements;
head(lst): get the first element of a list;
tail(lst): get the remaining part of a list;
is_list(lst): check whether an object is a list;
is_empty_list(lst): check whether an object is a list and empty;
length(lst): count the number of elements in a list.

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 23 / 33

Pair & List Processing

Recap: three ways to represent pair and list
Use your code in the Source language;
Use box-and-pointer diagram (as the list visualizer);
Use square brackets (as the output in the interpreter).

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 24 / 33

Pair & List Processing

Exercise 1
Draw the box-and-pointer diagrams for each one of them below:
var lstA = list(list ([], 1, list ([], 2, [])),

3,
list ([], 4, []));

var p1 = pair (4, []);
var p2 = pair (3, p1);
var lstB = list (1, pair (2, p2));

var z1 = pair (1, 3);
var z2 = list (3, z1);
var lstC = list(tail(z2), z1 , head(z1));

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 25 / 33

Pair & List Processing

Exercise 2
Write Source programs which can produce the box-and-pointer diagrams
below (The head of the whole list should be pointing to “start”):

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 26 / 33

Pair & List Processing

Exercise 3
Given two lists of the same length xs and ys, try to construct a 3rd list of
the same length in which each element is a pair composed of the element
on the same position from xs and ys. Your function name should be
make_pairs.

Example
For example, for make_pairs(list(1, 2, 3), list(11, 12, 13)), it
should return list(pair(1, 11), pair(2, 12), pair(3, 13)).

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 27 / 33

Pair & List Processing

Exercise 3
Now, generalize this concept by defining a new function. Given two lists of
the same length xs and ys, try to construct a 3rd list of the same length
in which each element is the result of applying a certain zip function to
the two elements on the same position from xs and ys. Your function
name should be zip.

Example
For example, if we apply
zip(function (x, y) { return x * y; },

list (1, 2, 3),
list (11, 12, 13));

it will return list(11, 24, 39).

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 28 / 33

Pair & List Processing

Exercise 4 - BST
A binary search tree (BST) is either an empty list or a list with three
elements: a left child BST, a number x , and a right child BST. Notice
that every number in the left BST is smaller than the number x , and every
number in the right BST is larger than the number x .

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 29 / 33

Pair & List Processing

Exercise 4 - BST
The first step to understand how to use BST is to have a try. Given 5
numbers 1...5, try to store them in a BST. Then, you should use the 3
ways to represent this list (notice: BST is just a special kind of list).
The answer may not be unique.

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 30 / 33

Pair & List Processing

Exercise 4 - BST
The data structure should at least provide the functions below to use:

get_min(tree): get the smallest element in a BST;
get_max(tree): get the largest element in a BST;
search(tree, x): check whether a number exists in a BST;
height(tree): get the height of a BST;
bst_to_list(tree): convert a BST into a list.

Task
Implement all these functions mentioned above and other necessary
functions that should be supported by a BST library.

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 31 / 33

Discussion Group Problems

Let’s discuss them now.

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 32 / 33

End

The End

Niu Yunpeng CS1101S DG Week 5 September 12, 2017 33 / 33

	Data abstraction
	What is data
	To understand data structure
	To use data structure

	Pair & list
	Pair processing
	An ``insider'' problem
	List processing
	Exercises

