CS1101S Discussion Group Week 6:
List & Tree Processing

Niu Yunpeng
niuyunpeng®@u.nus.edu

September 19, 2017

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 1/66

Overview

© Identity & equality
@ Identity in Source
@ Equality in Source

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 2/ 66

|dentity & Equality

Identity vs Equality

@ ldentity means exactly the same thing. Usually, they represent just
the different namings for the same object.

e Equality means two things hold the same value (or have the same
structure). They are two different things, however, their value is
equal.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 3/ 66

|dentity & Equality

@ Are they the same person?

@ Do they look the same?

Think about it...

o Identity?
o Equality?

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 4/ 66

|dentity & Equality

To compare identity in Source

boolean: straightforward;

string: straightforward;
numeral: trivial for integers, non-deterministic for non-integers;
function: two functions are always not identical;

pair/list: two pairs/lists are always not identical.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 5/ 66

|dentity & Equality

Exercise 1
Find out the result of the following statements:

true && false || true && false === false;
’Source’ === "Source";
1101 === "1101";
1/5+1/5 ===2/5;
1/5+1/5+1/5===23]/5;
)
Niu Yunpeng CS11015 DG Week 6 September 10, 2017

6/ 66

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence

|dentity & Equality

Exercise 2

Find out the result of the following statements:

function plus(a, b) {
return a + b;

}

function add(a, b) {
return a + b;

}
plus === add;
plus (2, 3) === add(2, 3);

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 7 / 66

|dentity & Equality

Exercise 3
Find out the result of the following statements:

function plus(a, b) {
return a + b;

}

var add = plus;

plus === add;

plus (2, 3) === add(2, 3);

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 8 / 66

|dentity & Equality

Exercise 4

Find out the result of the following statements:

function plus(a, b) {
return a + b;

}

function add () {
return plus;

}
plus === add;
plus === add();

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 9 / 66

|dentity & Equality

Exercise 5
Find out the result of the following statements:

[1 === [1;

pair(2, 3) === pair(3, 4);

var my_pair = pair ("NUS", "CS1101S");
var listl = list(1l, my_pair, 2);

var list2 = list (3 my_pair) ;

4:

head(tail(list1l)) === head(tail(tail(list2)));

Niu Yunpeng CS1101S DG Week 6

September 19, 2017

10 / 66

|dentity & Equality

To compare equality in Source

Two objects are equal in Source if and only if (iff)

o they have the same structure;

@ their constituent primitives are identical.

v

@ boolean, string, numeral: the same as identity;

@ empty list: always equal,

@ pair, list: equal iff their head and tail are both equal.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 11 / 66

|dentity & Equality

To compare equality in Source

function equal(a, b) {

if (is_empty_list(a) && is_empty_list(b)) {
return true;

} else if (is_list(a) && is_list (b)) {
return equal (head(a), head(b)) &&

equal (tail(a), tail(b));
} else {

return a === b;

>

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 12 / 66

|dentity & Equality

Exercise
Find out the result of the following statements:

equal(1 / 5 +1 /5 + 1/ 5, 3/ 5);
equal (list (1, 2), list("1", 2));
equal (list ([1), pair([1, [1));
equal (1ist (), tail(list([1)));

equal (pair (1, function(x) { return x; 1}),
pair (1, function(x) { return x; }));

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 13 / 66

Overview

9 List processing
@ From last week
o List library

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 14 / 66

List Processing

Revisit pair & list

@ Pair is a simple data structure that stores a head and a list;
@ A list is either an empty list or a pair whose tail is a list.
Three ways to represent pair and list

@ Use your code in the Source language;

@ Use box-and-pointer diagram (as the list visualizer);

@ Use square brackets (as the output in the interpreter).

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 15 / 66

List Processing

Use pair as a data structure

The data structure should at least provide the functions below to use:

@ pair(x, y): construct a pair with two elements a and b;
@ head(some_pair): get the first element of a pair;

@ tail(some_pair): get the second element of a pair;

@ is_pair(some_pair): check whether an object is a pair.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 16 / 66

List Processing

List library from last week

Up to last week, we have the following functions to use:

list(x, y, z, ...): construct a list with n elements;
head(1st): get the first element of a list;

tail(1lst): get the remaining part of a list;
is_list(1st): check whether an object is a list;

is_empty_list(1lst): check whether an object is a list and empty;

length(lst): count the number of elements in a list.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 17 / 66

List Processing

List library for this week

Up to now, the list library supports different kinds of functions:
@ List builder: 1ist, build_list, enum_list;

o List getter: head, tail, list_ref, member, is_member;
o List information: is_list, is_empty_list, length;

@ List modifier: append, reverse, remove, remove_all, filter,
map, for_each;

o List converter: accumulate, list_to_string.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 18 / 66

List Processing

List builder

The following functions can be used to build a list:

@ list(x, y, z, ...): construct a list with n elements;
@ build_list(n, func): construct a list by applying a unary function
func to every integer from 0 to n — 1;

@ enum_list(x, y): construct a list composed of every integer from x
to y (both inclusive).

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 19 / 66

List Processing

List getter

The following functions can be used to get the element in a list:

head (1st): get the first element of a list;
tail (1st): get the remaining part of a list;

list_ref(lst, n): return the nth element in a list, where the index

starts from 0;

member (x, 1lst): return the first sublist whose head is identical to

x, or an empty list if x if not in the list;

is_member(x, 1st): returns whether x is in the list.

Niu Yunpeng CS1101S DG Week 6

September 19, 2017

20 / 66

List Processing

List information

The following functions can be used to check the information of a list:
@ is_list(lst): check whether an object is a list;
@ is_empty_list(lst): check whether an object is a list and empty;

@ length(1lst): count the number of elements in a list.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 21 / 66

List Processing

The following functions can be used to modify a list:

@ append(xs, ys): return a new list that ys is appended to xs;
@ reverse(lst): return a new list in the reverse order of /st;

@ remove(x, 1st): return a new list by removing the first element in
the list which is identical to x;

@ remove_all(x, 1lst): return a new list by removing all elements in
the list whichever is identical to x;

o filter(func, 1st): apply a unary function func to every element
in the list, and return a new list which only contains elements whose
return value of func is true;

@ map(func, 1lst): return a new list by element-wise applying a unary
function func. |

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 22 / 66

List Processing

List converter

The following functions can be used to convert a list to other formats:

@ accumulate(func, base, 1lst): recursively apply a binary function
func to every element in a list from right to left. Start from base and
return the final result. The return value of the binary function func
should be in the same type as base so that we can convert the list
into the type of base.

@ list_to_string(lst): return a string that represents the list in the
format of square brackets.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 23 / 66

List Processing

@ In the following slides, you are going to see a straightforward version
for implementation of the list library.

@ You should be aware this implementation is only for demonstration
purpose, the actual implementation in Source is different.

@ Also, we will consider empty list [1, is_pair, is_empty_list and
list as built-in system functions.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 24 / 66

List Processing

List library implementation

// Straightforward implementation for
// Niu Yunpeng @ CEG NUS 2017
function pair(x, y) {

return function (m) { return m(x,

}

function head(z) {
return z(function (p, q) { return

}

function tail(z) {
return z(function (p, q) { return

}

list library in Source

y); }
p; 1)
q; 3);

Niu Yunpeng CS1101S DG Week 6

September 19, 2017

25 / 66

List Processing

List library implementation

// This version gives rise to a recursive process.
function build_list(n, func) {
function build(x) {
return x === n ? [] : pair(func(x), build(x + 1));
}
return build (0) ;
}

// This version gives rise to an iterative process.
function build_list(n, func) {
function iter(x, 1lst) {
return n < 0 ? 1lst : iter(x - 1, pair(func(x), 1lst))
}
return build(n - 1, []);

v

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 26 / 66

List Processing

List library implementation

// This version gives rise to a recursive provess.
function enum_list(x, y) {
return x > y ? [] : pair(x, enum_list(x + 1, y));

}

// This version gives rise to an iterative process.
function enum_list(x, y) {
function iter(n, 1st) {
return n < x ? 1lst : iter(n - 1, pair(m, 1lst));
}
return iter(y, [1);

}

function list_ref (lst, n) {
return n === 0 ? head(lst) : list_ref(tail(lst), n - 1);
}

v

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 27 / 66

List Processing

List library implementation

function member (x, 1lst) {
if (is_empty_list(lst)) {
return [];
} else {
return head(lst) === x 7 1lst
member (x, tail(lst));

}

function is_member (x, 1lst) {
return !is_empty_list (member(x, 1lst));

}

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 28 / 66

List Processing

List library implementation

function is_list(1lst) {
if (is_empty_list(lst)) {
return true;
} else {
return is_pair(lst) && is_list(tail(lst));

}

function is_empty_list(lst) {
// Built-in system function

}

function is_pair(lst) {
// Built-in system function

}

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 29 / 66

List Processing

List library implementation

// This version gives rise to a recursive process.
function length(lst) {

return is_empty_list(lst) 7?7 O : 1 + length(tail(lst));
}

// This version gives rise to an iterative process.
function length(lst) {
function iter(lst, len) {
return is_empty_list(lst) 7 len
iter(tail(1lst), len + 1);

return iter(lst, O0);

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 30 / 66

List Processing

List library implementation

// Notice: Week 6 still does not support set_tail yet.
// This version gives rise to a recursive process.
function append(xs, ys) {
if (is_empty_list(xs)) {
return xs;
} else {

return pair (head(xs), append(tail(xs), ys));

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 31/ 66

List Processing

List library implementation

// This version gives rise to a recursive process.
function reverse(lst) {
if (is_empty_list(1lst)) {
return 1lst;
} else {

return append(reverse(tail(lst)), list(head(lst)));

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 32 /66

List Processing

List library implementation

// This version gives rise to an iterative process.
function reverse(lst) {

function iter (origin, reversed) {
if (is_empty_list(origin)) {
return reversed;
} else {

return iter (tail (origin),

pair (head(origin), reversed)) ;

return iter (1lst, []);

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 33 /66

List Processing

List library implementation

// Notice: Week 6 still does not support set_tail yet.

// This version gives rise to a recursive process.
function remove (x, 1st) {
if (is_empty_list(lst)) {
return 1lst;
} else if (head(lst) === x) {
return tail (1lst);
} else {

return pair (head(lst, remove(x, tail(lst))));

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 34 / 66

List Processing

List library implementation

// Notice: Week 6 still does not support set_tail yet.
// This version gives rise to a recursive process.
function remove_all(x, 1lst) {
if (is_empty_list(lst)) {
return 1lst;

} else if (head(lst) === x) {
return remove_all(x, tail(lst));
} else {

return pair(head(lst, remove_all(x, tail(lst))));

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 35 / 66

List Processing

List library implementation

// Notice: Week 6 still does not support set_tail yet.

// This version gives rise to a recursive process.
function filter (func, 1lst) {
if (is_empty_list(lst)) {
return 1lst;
} else if (func(head(x))) {
return filter(x, tail(lst));
} else {

return pair (head(lst, filter (func, tail(lst))));

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 36 / 66

List Processing

List library implementation

// Notice: Week 6 still does not support set_head yet.
// This version gives rise to a recursive process.
function map(func, 1lst) {
if (is_empty_list(lst)) {
return 1lst;
} else {

return pair (func(head(lst)), map(func, tail(lst)));

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 37 / 66

List Processing

List library implementation

// This version gives rise to a recursive process.
function accumulate (func, base, 1st) {
if (is_empty_list(lst)) {
return base;

} else {
return func(head(lst), accumulate (func, base, tail(
1st)));
}
}
v
Niu Yunpeng CS1101S DG Week 6

September 19, 2017 38 / 66

List Processing

List library implementation

// This version gives rise to an iterative process.
function accumulate (func, base, 1st) {
function iter(lst, result) {
if (is_empty_list(lst)) {
return result;
} else {

return iter(tail(lst), func(head(lst), result));

return iter(reverse(lst), base);

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 39 / 66

Overview

9 Tree processing
@ Search

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 40 / 66

Tree Processing

From list to tree

@ The definition of list is: A list is either an empty list or a pair whose
tail is a list.

@ Therefore, the head of a list does not have to be a simple item.

@ Indeed, the head of a list may be a list as well.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 41 / 66

Tree Processing

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 42 / 66

Tree Processing

Tree in Computer Science

@ Binary Search Tree (BST)
@ Minimum Spanning Tree (MST)
Shortest Path Tree

o

o AVL Tree

@ Red-black Tree
@ Skip List

o

Fibonacci Tree

Therefore...
@ Tree is a very important data structure.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 43 / 66

Tree Processing

To use tree as a data structure

The tree library is different from list library:
@ count_leaves(tree): count the number of leaves in a tree;

@ tree_map(tree): element-wise map on a tree;

@ tree_reverse(tree): reverse the order of all leaves in a tree;

o ...
y

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 44 / 66

Tree Processing

We shall introduce two algorithms for searching:

@ linear search: based on list;

@ binary search: based on tree;

Missions 11 (new this year)

@ About binary search.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 45 / 66

Tree Processing

Linear search

function linear_search(xs, x) {
if (is_empty_list(xs)) {
return false;
} else {
return head(xs) === x 7 true
linear_search(tail(xs), x);

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 46 / 66

Tree Processing

@ Each node has two children.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 47 / 66

Tree Processing

Binary Search Tree

@ Each node has two children;

@ Left child is always smaller than right child.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 48 / 66

Tree Processing

Binary Search

@ Decide to go left or right.
@ Let's search for 52.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 49 / 66

Overview

@ One more thing about recursion
@ Permutation
@ Combination

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 50 / 66

Recursion

Classical examples of recursion

o Factorial

Square root

Power function

Fibonacci

Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower

Coin change

Permutation / combination

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 51 / 66

Recursion

Examples that we have already covered before...

@ Factorial

Square root

Power function

Fibonacci

Greatest common divisor (GCD)
Least common multiple (LCM)

Hanoi tower

Coin change

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 52 / 66

Recursion

Last things about recursion...

@ Permutation

@ Combination

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 53 / 66

Recursion

@ In mathematics, the notion of permutation relates to the act of
arranging all the members of a set into some sequence or order.

@ Here, we care about how to list all the permutations of a given set.

Example
o Given a set S = {1,2,3}, then:
@ The permutation of S is
{{1,2,3},{1,3,2},{2,1,3},{2,3,1},4{3,1,2},{3,2,1}}

@ The number of permutation of S is 6.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 54 / 66

Recursion

Idea about permutation

@ There is only 1 permutation of [] - itself.
@ For each element x in S:

o Generate all permutations of S — x recursively;
e Prepand x in front of each one of them.

@ Join all results together.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 55 / 66

Recursion

function permutation(lst) {
if (is_empty_list(lst)) {
return list ([]);
} else {
return accumulate (append, [],
map (function (x) {
return map(function (other) {
return pair(x, other);
}, permutation(remove(x, 1lst)));
}, 1st));

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 56 / 66

Recursion

r-Permutation

@ In elementary combinatorics, r-permutation usually refers to the act
of arranging k elements taken from a set length of n into some order
or sequence, where k < n.

@ Given a set S = {1,2,3}, then:
@ The 2-permutation of S is

{{1,2},{2,1},{1,3},{3,1},{2,3},{3,2}}

@ The number of 2-permutation of S is 6.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 57 / 66

Recursion

function r_permutation(lst, r) {
if (r === 0) {
return list ([]);
} else if (is_empty_list(lst)) {
return [];
} else {
return accumulate (append, [],
map (function (x) {
return map(function (other) {
return pair(x, other);
}, r_permutation(remove(x, 1lst),
r - 1));
}, 1st));

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 58 / 66

Recursion

@ In mathematics, a combination is a way of selecting items from a set
such that the order of selection does not matter. A k-combination of
a set S is a subset of k distinct elements from S.

@ The number of k-combinations is equal to the binomial coefficient

(0) = wriesmy

o Given aset S ={1,2,3}, then:
@ The 2-combination of S is

{{1,2},{1,3},{2,3}}

@ The number of 2-combination of S is 3.

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 59 / 66

Recursion

Idea abou k-combination

o Instead of arranging elements into a specific order, we need to select
a certain number of elements now.

@ For each element, we have two choices: to select or to not select. |

@ Similar to the coin change problem.

@ Instead of counting the number of leaves in the decision tree, we want
to list all possible paths from the root to every leaf.

v

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 60 / 66

Recursion

function k_combination(lst, k) {
if (kx === 0) {
return list ([]);
} else if (is_empty_list(lst)) {
return [];
} else {

var with_head = map(function(else) {
return pair (head(1lst), else);
}, k_combination(tail(lst), k - 1));

var without_head = k_combination(tail(lst), k);

return append(with_head, without_head);

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 61 / 66

Recursion

Examples that we have already covered so far...

o Factorial

Square root

Power function

Fibonacci

Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower

Coin change

Permutation/combination

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 62 / 66

Recursion

Congratulations!

@ You have finished the course from Department of Recursion, Faculty
of Abstraction, University of Wishful Thinking!

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 63 / 66

Recursion

ecursion in Google Search

@ Try to search for “recursion” in Google:

GO Ugle recursion

Search: @ the web O pages from India

Web (& Show options i . X
despite of clicking recursion

h again and again, Google
Did you mean: recursion 4/ keeps on displaying it

Recursion - Wikipedia, the free encyclopedia

This article is about the concept of recursion. For the novel, see Recursion (nove
computer applications, see Recursion (computer science). ...
en.wikipedia.org/wiki/Recursion - Cached - Similar

@ Now, you know why “Google is always your best friend”, right?

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 64 / 66

Discussion Group Problems

Let’s discuss them now.

CS1101S DG Week 6 September 19, 2017 65 / 66

The End

Niu Yunpeng CS1101S DG Week 6 September 19, 2017 66 / 66

	Identity & equality
	Identity in Source
	Equality in Source

	List processing
	From last week
	List library

	Tree processing
	Search

	One more thing about recursion
	Permutation
	Combination

