CS1101S Discussion Group Week 7:
Data Structure Design & Mid-term Review

Niu Yunpeng
niuyunpeng@u.nus.edu

October 3, 2017

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 1/37

Overview

@ Data structure design
@ Design principle
@ Examples

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 2/37

Data Structure Design

Three steps to implement a program
In order to solve a problem using a program, you need:

@ Think of an appropriate algorithm;

@ Design a suitable data structure;
@ Do the coding (with good coding style).

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 3/37

Data Structure Design

The first three CS modules are:

e (CS1010/CS1101S Programming Methodology
@ CS2030 Programming Methodology |l
@ (CS2040 Data Structures and Algorithms

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 4 /37

Data Structure Design

Data structure

@ In computer science, a data structure is a particular way of organizing
data in a computer so that it can be used efficiently.

Algorithm

@ In computer science, an algorithm is a self-contained sequence of
actions to be performed.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 5/37

Data Structure Design

Data & information

@ Data is the storage of information.

@ Two kinds of information: states & procedures.

Data structure & algorithm

@ To store states efficiently: use data structure;

e To perform procedures efficiently: use algorithm.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 6 /37

Data Structure Design

Design principle of data structure

Understand the requirement before doing the actual design;
Separate the interface from the implementation;

Compare the advantage and tradeoff;

Principle of last commitment.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 7 /37

Data Structure Design

Examples of data structure so far...

@ Coin change

Symbolic differentiation
Rational number
Complex number
Pair/list/tree

Set

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 8 /37

Data Structure Design

Common pattern of these examples

Constructor

Accessor

°
°

@ Predicate
@ Printer
°

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 9 /37

Overview

© Sorting

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 10 / 37

Sorting algorithms so far...

@ Insertion sort
@ Selection sort
@ Merge sort

@ Quick sort

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 11 /37

Sorting

Insertion sort

function insertion_sort(xs) {
if (is_empty_list(xs)) {
return Xxs;
} else {
return insert(head(xs), insertion_sort(tail(xs)));

}
function insert(x, xs) {
if (is_empty_list(xs)) {
return list(x);
} else if (x <= head(xs)) {
return pair(x, xs);
} else {
return pair(head(xs), insert(x, tail(xs)));

v

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 12 / 37

Sorting

Selection sort

function selection_sort(xs) {
if (is_empty_list(xs)) {
return Xxs;
} else {
var s = smallest(xs);
return pair(s, selection_sort(remove(s, xs)));

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 13 / 37

Sorting

Selection sort

function smallest(xs) {
function sm(x, ys) {
if (is_empty_list(ys)) {
return x;
} else if (x < head(ys)) {
return sm(x, tail(ys));
} else {
return sm(head(ys), tail(ys));

return sm(head(xs), tail(xs));

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 14 / 37

sort

function merge_sort(xs) {

if (is_empty_list(xs) || is_empty_list(tail(xs))) {
return xs;
} else {

var mid = middle (length(xs));
return merge (merge_sort (take(xs, mid)),
merge_sort (drop(xs, mid)));

}

function middle (n) {
return math_floor(n / 2);

}

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 15 / 37

function merge(xs, ys) {
if (is_empty_list(xs)) {
return ys;
} else if (is_empty_list(ys)) {
return xs;

} else {
var x = head(xs);
var y = head(ys);

if (x < y) {

return pair(x, merge(tail(xs), ys));
} else {

return pair(y, merge(xs, tail(ys)));

3

v

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 16 / 37

function take(xs, n) {

if (n === 0) {
return [];
} else {
return pair (head(xs), take(tail(xs), n - 1));
}
}
function drop(xs, n) {
if (n === 0) {
return xs;
} else {
return drop(tail(xs), n - 1);
}

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 17 / 37

Sorting

Quick sort

function quicksort(xs) {
// Implementation

}

function partition(xs, p) {
// Implementation
}

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 18 / 37

Overview

© Mid-term review
@ What we have learned
@ To prepare for the mid-term test

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 19 / 37

Mid-term Review

Revisit the CS1101S roadmap

CS1101S Road Map
Memoization Streams @

Dynamic Object-Oriented
Programming
x

Programming

\
Symbolic >
Higher-Order List yData Generic

Procedures Processing Operators

/' ‘\\ '\ /)
J \ Data Mutation &
Procedural |teration | .
Abstraction \\ Abstraction State
Wishful Recursion Order of
Thinking Growth

Fundamental of computer programming

Niu Yunpeng CS1101S DG Week 7

October 3, 2017

20 / 37

Mid-term Review

Things we have covered so far...

@ Components of programming language
Wishful thinking/abstraction

Recursion /iteration

Higher-order programming
Pair/list/tree processing

Data structure design

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 21 /37

Mid-term Review

Components of programming language

@ Primitives:
The smallest constituent unit of a programming language.

@ Combination:
Ways to put primitives together.

@ Abstraction:
The method to simplify the messy combinations.
o To abstract data: use naming;

o To abstract procedures: use functions.
e Sometimes, naming and functions are combined together.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 22 /37

Mid-term Review

Wishful thinking/abstraction

To make a good abstraction:

o Modularity:
Separate multiple steps (and sub-steps).
o Readability:
Easy for others to read and understand.
@ Reusability:
Provide a generic interface to be used commonly.
e Maintainability:
Convenient to debug, refactor and deploy.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 23 /37

Recursion /iteration

@ [teration: the buttom-up approach;
@ Recursion: the top-down approach.

How to understand recursion?
o Use substitution model.

@ Repeatedly replace a function call by its function body, in which the
formal parameters are replaced by the respective actual arguments.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 24 / 37

Recursive function

@ Any function that calls itself (directly or indirectly) is called a
recursive function.

To write recursive functions correctly

o Base case(s)
@ Scale
@ Sub-problem(s)

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 25 / 37

Deferred operation

@ The operations that have to be suspended because they need to wait
for some other operations to finish first.

@ In order to suspend them, we need to remember them in the memory,
which is a waste of space.

Recursive & iterative process

@ Execution of a recursive function may give rise to either a recursive or
iterative process.

@ Recursive process: those with deferred operations.

@ lterative process: those without deferred operations.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 26 / 37

Mid-term Review

Classical examples of recursion

o Factorial

Square root

Power function

Fibonacci

Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower

Coin change

Permutation / combination

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 27 / 37

Mid-term Review

Higher-order programming

Why we can do higher-order programming;:
@ Functions are also variables.
@ They are not special.

@ They just behave like normal variables.

To use higher-order programming:
@ Variables can be functions.

@ Parameters can be functions.

@ Return values can be functions.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 28 / 37

Mid-term Review

Pair/list/tree processing

Up to now, the list library supports different kinds of functions:
@ List builder: 1ist, build list, enum list;
o List getter: head, tail, list_ref, member, is_member;
@ List information: is_list, is_empty_list, length;
o List modifier: append, reverse, remove, remove_all, filter,
map, for_each,;
@ List converter: accumulate, list_to_string.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 29 / 37

Mid-term Review

Data structure design

You should follow these principles:

@ Understand the requirement before doing the actual design;
@ Separate the interface from the implementation;
@ Compare the advantage and tradeoff;

@ Principle of last commitment.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 30/ 37

Two types of study

@ Subject-oriented: to learn the really useful stuff;

@ Examination-oriented: to help you get good grades.

Consequence

@ Subject-oriented: good for you (long-term goal);

e Examination-oriented: good for your CAP (short-term goal).

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 31 /37

How to choose between two types of study

@ During recess week and reading week: examination-oriented,

o Else: subject-oriented.

Suggestion

o CAP is important that it should be part of your life.

@ However, it should not become all of your life.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 32 /37

To prepare for an examination effectively

@ Read all the materials again;

@ Do as many PYPs (past year papers) as possible;
@ Summarize what you have learned;
°

Be relaxed.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 33 /37

Mid-term Review

To prepare for CS1101S mid-term test
Do all the available PYPS carefully;

Read all lecture notes, recitation notes, discussion group notes again;

Be familiar with the latest Source language library;

o
o
@ Do all discussion group problems again;
o
o

If you still have time, read the textbook SICP.

After these steps
@ Don't worry anymore, you are ready for the midterm!

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 34 /37

Good Luck

All the best for your midterm test!

CS1101S DG Week 7 October 3, 2017 35 /37

The End

Niu Yunpeng CS1101S DG Week 7 October 3, 2017

	Data structure design
	Design principle
	Examples

	Sorting
	Mid-term review
	What we have learned
	To prepare for the mid-term test

