
Welcome

CS1101S Discussion Group Week 7:
Data Structure Design & Mid-term Review

Niu Yunpeng

niuyunpeng@u.nus.edu

October 3, 2017

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 1 / 37

Overview

1 Data structure design
Design principle
Examples

2 Sorting

3 Mid-term review
What we have learned
To prepare for the mid-term test

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 2 / 37

Data Structure Design

Three steps to implement a program
In order to solve a problem using a program, you need:

Think of an appropriate algorithm;
Design a suitable data structure;
Do the coding (with good coding style).

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 3 / 37

Data Structure Design

Thus...
The first three CS modules are:

CS1010/CS1101S Programming Methodology
CS2030 Programming Methodology II
CS2040 Data Structures and Algorithms

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 4 / 37

Data Structure Design

Data structure
In computer science, a data structure is a particular way of organizing
data in a computer so that it can be used efficiently.

Algorithm
In computer science, an algorithm is a self-contained sequence of
actions to be performed.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 5 / 37

Data Structure Design

Data & information
Data is the storage of information.
Two kinds of information: states & procedures.

Data structure & algorithm
To store states efficiently: use data structure;
To perform procedures efficiently: use algorithm.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 6 / 37

Data Structure Design

Design principle of data structure
Understand the requirement before doing the actual design;
Separate the interface from the implementation;
Compare the advantage and tradeoff;
Principle of last commitment.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 7 / 37

Data Structure Design

Examples of data structure so far...
Coin change
Symbolic differentiation
Rational number
Complex number
Pair/list/tree
Set
...

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 8 / 37

Data Structure Design

Common pattern of these examples
Constructor
Accessor
Predicate
Printer
...

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 9 / 37

Overview

1 Data structure design
Design principle
Examples

2 Sorting

3 Mid-term review
What we have learned
To prepare for the mid-term test

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 10 / 37

Sorting

Sorting algorithms so far...
Insertion sort
Selection sort
Merge sort
Quick sort

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 11 / 37

Sorting

Insertion sort

function insertion_sort (xs) {
if (is_empty_list (xs)) {

return xs;
} else {

return insert (head(xs), insertion_sort (tail(xs)));
}

}
function insert (x, xs) {

if (is_empty_list (xs)) {
return list(x);

} else if (x <= head(xs)) {
return pair(x, xs);

} else {
return pair(head(xs), insert (x, tail(xs)));

}
}

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 12 / 37

Sorting

Selection sort

function selection_sort (xs) {
if (is_empty_list (xs)) {

return xs;
} else {

var s = smallest (xs);
return pair(s, selection_sort (remove (s, xs)));

}
}

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 13 / 37

Sorting

Selection sort

function smallest (xs) {
function sm(x, ys) {

if (is_empty_list (ys)) {
return x;

} else if (x < head(ys)) {
return sm(x, tail(ys));

} else {
return sm(head(ys), tail(ys));

}
}

return sm(head(xs), tail(xs));
}

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 14 / 37

Sorting

Merge sort

function merge_sort (xs) {
if (is_empty_list (xs) || is_empty_list (tail(xs))) {

return xs;
} else {

var mid = middle (length (xs));
return merge(merge_sort (take(xs , mid)),

merge_sort (drop(xs , mid)));
}

}

function middle (n) {
return math_floor (n / 2);

}

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 15 / 37

Sorting

Merge sort

function merge(xs , ys) {
if (is_empty_list (xs)) {

return ys;
} else if (is_empty_list (ys)) {

return xs;
} else {

var x = head(xs);
var y = head(ys);

if (x < y) {
return pair(x, merge(tail(xs), ys));

} else {
return pair(y, merge(xs , tail(ys)));

}
}

}

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 16 / 37

Sorting

Merge sort

function take(xs , n) {
if (n === 0) {

return [];
} else {

return pair(head(xs), take(tail(xs), n - 1));
}

}

function drop(xs , n) {
if (n === 0) {

return xs;
} else {

return drop(tail(xs), n - 1);
}

}

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 17 / 37

Sorting

Quick sort

function quicksort (xs) {
// Implementation

}

function partition (xs , p) {
// Implementation

}

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 18 / 37

Overview

1 Data structure design
Design principle
Examples

2 Sorting

3 Mid-term review
What we have learned
To prepare for the mid-term test

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 19 / 37

Mid-term Review

Revisit the CS1101S roadmap

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 20 / 37

Mid-term Review

Things we have covered so far...
Components of programming language
Wishful thinking/abstraction
Recursion/iteration
Higher-order programming
Pair/list/tree processing
Data structure design
...

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 21 / 37

Mid-term Review

Components of programming language
Primitives:
The smallest constituent unit of a programming language.
Combination:
Ways to put primitives together.
Abstraction:
The method to simplify the messy combinations.

To abstract data: use naming;
To abstract procedures: use functions.
Sometimes, naming and functions are combined together.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 22 / 37

Mid-term Review

Wishful thinking/abstraction
To make a good abstraction:

Modularity:
Separate multiple steps (and sub-steps).
Readability:
Easy for others to read and understand.
Reusability:
Provide a generic interface to be used commonly.
Maintainability:
Convenient to debug, refactor and deploy.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 23 / 37

Mid-term Review

Recursion/iteration
Iteration: the buttom-up approach;
Recursion: the top-down approach.

How to understand recursion?
Use substitution model .
Repeatedly replace a function call by its function body, in which the
formal parameters are replaced by the respective actual arguments.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 24 / 37

Mid-term Review

Recursive function
Any function that calls itself (directly or indirectly) is called a
recursive function.

To write recursive functions correctly
Base case(s)
Scale
Sub-problem(s)

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 25 / 37

Mid-term Review

Deferred operation
The operations that have to be suspended because they need to wait
for some other operations to finish first.
In order to suspend them, we need to remember them in the memory,
which is a waste of space.

Recursive & iterative process
Execution of a recursive function may give rise to either a recursive or
iterative process.
Recursive process: those with deferred operations.
Iterative process: those without deferred operations.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 26 / 37

Mid-term Review

Classical examples of recursion
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change
Permutation / combination
...

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 27 / 37

Mid-term Review

Higher-order programming
Why we can do higher-order programming:

Functions are also variables.
They are not special.
They just behave like normal variables.

To use higher-order programming:
Variables can be functions.
Parameters can be functions.
Return values can be functions.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 28 / 37

Mid-term Review

Pair/list/tree processing
Up to now, the list library supports different kinds of functions:

List builder: list, build_list, enum_list;
List getter: head, tail, list_ref, member, is_member;
List information: is_list, is_empty_list, length;
List modifier: append, reverse, remove, remove_all, filter,
map, for_each;
List converter: accumulate, list_to_string.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 29 / 37

Mid-term Review

Data structure design
You should follow these principles:

Understand the requirement before doing the actual design;
Separate the interface from the implementation;
Compare the advantage and tradeoff;
Principle of last commitment.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 30 / 37

Mid-term Review

Two types of study
Subject-oriented: to learn the really useful stuff;
Examination-oriented: to help you get good grades.

Consequence
Subject-oriented: good for you (long-term goal);
Examination-oriented: good for your CAP (short-term goal).

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 31 / 37

Mid-term Review

How to choose between two types of study
During recess week and reading week: examination-oriented ;
Else: subject-oriented.

Suggestion
CAP is important that it should be part of your life.
However, it should not become all of your life.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 32 / 37

Mid-term Review

To prepare for an examination effectively
Read all the materials again;
Do as many PYPs (past year papers) as possible;
Summarize what you have learned;
Be relaxed.

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 33 / 37

Mid-term Review

To prepare for CS1101S mid-term test
Do all the available PYPS carefully;
Read all lecture notes, recitation notes, discussion group notes again;
Do all discussion group problems again;
Be familiar with the latest Source language library;
If you still have time, read the textbook SICP.

After these steps
Don’t worry anymore, you are ready for the midterm!

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 34 / 37

Good Luck

All the best for your midterm test!

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 35 / 37

Good Luck

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 36 / 37

End

The End

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 37 / 37

	Data structure design
	Design principle
	Examples

	Sorting
	Mid-term review
	What we have learned
	To prepare for the mid-term test

