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Data Structure Design

Three steps to implement a program
In order to solve a problem using a program, you need:

Think of an appropriate algorithm;
Design a suitable data structure;
Do the coding (with good coding style).
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Data Structure Design

Thus...
The first three CS modules are:

CS1010/CS1101S Programming Methodology
CS2030 Programming Methodology II
CS2040 Data Structures and Algorithms
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Data Structure Design

Data structure
In computer science, a data structure is a particular way of organizing
data in a computer so that it can be used efficiently.

Algorithm
In computer science, an algorithm is a self-contained sequence of
actions to be performed.
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Data Structure Design

Data & information
Data is the storage of information.
Two kinds of information: states & procedures.

Data structure & algorithm
To store states efficiently: use data structure;
To perform procedures efficiently: use algorithm.
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Data Structure Design

Design principle of data structure
Understand the requirement before doing the actual design;
Separate the interface from the implementation;
Compare the advantage and tradeoff;
Principle of last commitment.
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Data Structure Design

Examples of data structure so far...
Coin change
Symbolic differentiation
Rational number
Complex number
Pair/list/tree
Set
...
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Data Structure Design

Common pattern of these examples
Constructor
Accessor
Predicate
Printer
...
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Sorting

Sorting algorithms so far...
Insertion sort
Selection sort
Merge sort
Quick sort
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Sorting

Insertion sort

function insertion_sort (xs) {
if ( is_empty_list (xs)) {

return xs;
} else {

return insert (head(xs), insertion_sort (tail(xs)));
}

}
function insert (x, xs) {

if ( is_empty_list (xs)) {
return list(x);

} else if (x <= head(xs)) {
return pair(x, xs);

} else {
return pair(head(xs), insert (x, tail(xs)));

}
}
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Sorting

Selection sort

function selection_sort (xs) {
if ( is_empty_list (xs)) {

return xs;
} else {

var s = smallest (xs);
return pair(s, selection_sort ( remove (s, xs)));

}
}
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Sorting

Selection sort

function smallest (xs) {
function sm(x, ys) {

if ( is_empty_list (ys)) {
return x;

} else if (x < head(ys)) {
return sm(x, tail(ys));

} else {
return sm(head(ys), tail(ys));

}
}

return sm(head(xs), tail(xs));
}
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Sorting

Merge sort

function merge_sort (xs) {
if ( is_empty_list (xs) || is_empty_list (tail(xs))) {

return xs;
} else {

var mid = middle ( length (xs));
return merge( merge_sort (take(xs , mid)),

merge_sort (drop(xs , mid)));
}

}

function middle (n) {
return math_floor (n / 2);

}
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Sorting

Merge sort

function merge(xs , ys) {
if ( is_empty_list (xs)) {

return ys;
} else if ( is_empty_list (ys)) {

return xs;
} else {

var x = head(xs);
var y = head(ys);

if (x < y) {
return pair(x, merge(tail(xs), ys));

} else {
return pair(y, merge(xs , tail(ys)));

}
}

}
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Sorting

Merge sort

function take(xs , n) {
if (n === 0) {

return [];
} else {

return pair(head(xs), take(tail(xs), n - 1));
}

}

function drop(xs , n) {
if (n === 0) {

return xs;
} else {

return drop(tail(xs), n - 1);
}

}
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Sorting

Quick sort

function quicksort (xs) {
// Implementation

}

function partition (xs , p) {
// Implementation

}
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Mid-term Review

Revisit the CS1101S roadmap
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Mid-term Review

Things we have covered so far...
Components of programming language
Wishful thinking/abstraction
Recursion/iteration
Higher-order programming
Pair/list/tree processing
Data structure design
...
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Mid-term Review

Components of programming language
Primitives:
The smallest constituent unit of a programming language.
Combination:
Ways to put primitives together.
Abstraction:
The method to simplify the messy combinations.

To abstract data: use naming;
To abstract procedures: use functions.
Sometimes, naming and functions are combined together.
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Mid-term Review

Wishful thinking/abstraction
To make a good abstraction:

Modularity:
Separate multiple steps (and sub-steps).
Readability:
Easy for others to read and understand.
Reusability:
Provide a generic interface to be used commonly.
Maintainability:
Convenient to debug, refactor and deploy.
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Mid-term Review

Recursion/iteration
Iteration: the buttom-up approach;
Recursion: the top-down approach.

How to understand recursion?
Use substitution model .
Repeatedly replace a function call by its function body, in which the
formal parameters are replaced by the respective actual arguments.
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Mid-term Review

Recursive function
Any function that calls itself (directly or indirectly) is called a
recursive function.

To write recursive functions correctly
Base case(s)
Scale
Sub-problem(s)
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Mid-term Review

Deferred operation
The operations that have to be suspended because they need to wait
for some other operations to finish first.
In order to suspend them, we need to remember them in the memory,
which is a waste of space.

Recursive & iterative process
Execution of a recursive function may give rise to either a recursive or
iterative process.
Recursive process: those with deferred operations.
Iterative process: those without deferred operations.
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Mid-term Review

Classical examples of recursion
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change
Permutation / combination
...

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 27 / 37



Mid-term Review

Higher-order programming
Why we can do higher-order programming:

Functions are also variables.
They are not special.
They just behave like normal variables.

To use higher-order programming:
Variables can be functions.
Parameters can be functions.
Return values can be functions.
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Mid-term Review

Pair/list/tree processing
Up to now, the list library supports different kinds of functions:

List builder: list, build_list, enum_list;
List getter: head, tail, list_ref, member, is_member;
List information: is_list, is_empty_list, length;
List modifier: append, reverse, remove, remove_all, filter,
map, for_each;
List converter: accumulate, list_to_string.
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Mid-term Review

Data structure design
You should follow these principles:

Understand the requirement before doing the actual design;
Separate the interface from the implementation;
Compare the advantage and tradeoff;
Principle of last commitment.
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Mid-term Review

Two types of study
Subject-oriented: to learn the really useful stuff;
Examination-oriented: to help you get good grades.

Consequence
Subject-oriented: good for you (long-term goal);
Examination-oriented: good for your CAP (short-term goal).

Niu Yunpeng CS1101S DG Week 7 October 3, 2017 31 / 37



Mid-term Review

How to choose between two types of study
During recess week and reading week: examination-oriented ;
Else: subject-oriented.

Suggestion
CAP is important that it should be part of your life.
However, it should not become all of your life.
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Mid-term Review

To prepare for an examination effectively
Read all the materials again;
Do as many PYPs (past year papers) as possible;
Summarize what you have learned;
Be relaxed.
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Mid-term Review

To prepare for CS1101S mid-term test
Do all the available PYPS carefully;
Read all lecture notes, recitation notes, discussion group notes again;
Do all discussion group problems again;
Be familiar with the latest Source language library;
If you still have time, read the textbook SICP.

After these steps
Don’t worry anymore, you are ready for the midterm!
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Good Luck

All the best for your midterm test!
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Good Luck
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End

The End
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