CS1101S Discussion Group Week 9:
Mutable Data & Array

Niu Yunpeng
niuyunpeng@u.nus.edu

October 17, 2017

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 1/42

Overview

© Mutable data
@ States & change of states
@ Environment model
@ Mutable data structure

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 2/ 42

Mutable Data

Representation of data in Source

Data is the storage of information.
Two kinds of information: states & procedures.
To represent states: use variables;

To manipulate states: use functions.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 3/42

Mutable Data

Before Week 8

@ Pure functional programming.
@ Substitution model.

@ Return value do not change if values of arguments are the same.

After Week 8

@ Stateful programming.
@ Environment model.

@ Return value may vary even if values of arguments are the same.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 4 /42

Mutable Data

For stateless programming...

@ Once a variable has been defined, its value cannot be changed.

o If we really want to change its value, it has to be assigned to a new
variable.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 5/ 42

Mutable Data

The concept of memory allocation

@ When we define a variable, the interpreter will allocate a position in
memory (random access memory, RAM) randomly so that we can use

it any time we want.

@ The name is actually the reference to this position in memory.

@ Whenever we call the name, the interpreter will just look for the value
stored at that position in memory.)

Understanding
@ A variable is like a changeable container.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 6 /42

Mutable Data

Why can we change the value of a variable?

@ Before, when we want to have a new value of a variable, we allocate a
new position in memory.

@ However, it is not necessary for us to do this at all (because this is in
fact a waste of space in memory).

@ We can just update the value stored at the original position. When
we call that name after that, the interpreter will still look up for the
same position and a new value will be found.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 Y

Mutable Data

Environment model

@ Even though we supply the same values for all arguments, the return
value of a function may still vary.

@ Due to this, the substitution model breaks down.
@ We have to introduce a new one and a better one:

environment model

@ It is an upgrade of substitution model + variable scoping.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 8 /42

Mutable Data

Each function call creates a new frame (similar to scope for variables).
The initial frame is called global frame (global scope).
Each frame contains a series of bindings of names and values.

@ In order to find the variable, it is possible to search starting from the
current local scope up to the global scope.

@ Thus, all these corresponding frames are deterministic to the value of
the variable. They are called the environment, a sequence of frames.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 9 /42

Mutable Data

Frame & environment

@ Looks like a list.

@ The head is the current frame, while the tail is pointing to the parent
frames, called its enclosing environment.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 10 / 42

Mutable Data

What happens when we call a function?

@ Create a new frame to extend the current environment.

@ Evaluate actual arguments and bind their values to formal parameters.
@ Local variables are bound to undefined.
o

Evaluate the function body and send the return value to the enclosing
environment.

v

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 11 / 42

Mutable Data

other variables...
global

env
»| X 4

foo:—|
l

function (x) {
var y = x * 2;
if (y === 10) {
x =x + 5;
: lret?rn x; x: 4 x: 10
else
return foo(x + 1); y: 8 y: 10
}
}

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 12/

Mutable Data

@ Assume the program stops at the comment.

@ Draw the environment model diagram gradually.

@ Also, identify the value of x at the point of that comment.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 13 / 42

Mutable Data

Exercise 1.1

var x = 0;

function environmentalist () {
x = x + 1;

function model (x) {
X = X + 2;
return x;

return model (x);
}
// Here
environmentalist () ;
x = environmentalist () ;

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 14 / 42

Mutable Data

var x = 0;

function environmentalist () {
X = x + 1;

function model(x) {
X = x + 2;
// Here
return Xx;

return model (x) ;

}

environmentalist () ;
x = environmentalist () ;

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 15 / 42

Mutable Data

var x = 0;

function environmentalist () {
X = x + 1;

function model(x) {
X = x + 2
return x;

return model (x) ;

}

environmentalist () ;
// Here
x = environmentalist () ;

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 16 / 42

Mutable Data

var x = 0;

function environmentalist () {
X = x + 1;

function model(x) {
X = x + 2
return x;

return model (x) ;

}

environmentalist () ;
x = environmentalist ();
// Here

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 17 / 42

Mutable Data

@ The whole program has been evaluated.

@ Draw the environment model diagram.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017

Mutable Data

Exercise 2.1

var x = 4;

function foo(x) {

var 'y = x * 2;
if (y === 10) {
x = x + 55

return x;
} else {
return foo(x + 1);

foo(x);

Niu Yunpeng CS1101S DG Week 9

October 17, 2017

19 / 42

Mutable Data

function alpha(x) {
var y = 3;

function beta(x) {

y =yt x;
return y;

return beta;

var haha = alpha(5);
haha (1) ;

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 20 / 42

Mutable Data

Before today - immutable data structure

@ A collection of data into one object.
e Data inside cannot be changed.

@ Constructor, accessor, predicate, printer, ...

After today - mutable data structure

@ A collection of data into one object.
@ Data inside can be changed.

o Constructor, accessor (getter), mutator (setter), predicate, printer, ...

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 21/ 42

Mutable Data

Mutable pair/list

set_head(pr, x): set the head of a pair to become x;

@ set_tail(pr, y): set the tail of a pair to become y.

Remember identity & equality;

Remember the concept of memory allocation.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 22 /42

Mutable Data

Things you can do for pair/list

@ Re-write some parts of the list library;

o Create a cycle for a list.

Your task today

@ Can you write a program to detect the number of cycles in a given list
(or return 0 if none)?

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 23 /42

Mutable Data

Mutable data structure

@ Linked list
@ Double-way linked list

@ Queue
Stack
Table

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 24 / 42

Mutable Data

Linked list / double-way linked list 1

@ make_linked_list(): create an empty linked list;
get_first(lst): get the first node of the linked list;

get_last(1lst): get the first node of the linked list;
get_next(node): get the next node in the linked list;
get_prev(node): get the last node in the linked list;

get_data(node): get the data stored in the current node.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 25/ 42

Mutable Data

Linked list / double-way linked list 2

@ prepend(lst, x): add x to the front of the linked list;

append(1lst, x): add x to the rear of the linked list;
add_before(node, x): add x before the node;
add_after(node, x): add x after the node;
remove_first(lst): delete the first node in the linked list;
remove_last(1lst): delete the last node in the linked list;
delete(node): delete the selected node in the linkd list;
empty (1st): delete all items in the linked list;

is_empty_linked_list(1lst): check if a linked list is empty.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 26 / 42

Mutable Data

Pointer Pointer Pointer

N\ N\, N |
[First —{ Data | ——{ Data | —|—»| Data [——{ Data | nuil | [Last |

Pointer Pointer Pointer

N\ N N |
| First H true | —|—>| 4.28 | —I—’l”XYZ”l —I—Pl 86 | null | | Last |

Pointer Pointer Pointer
N N N | |
First : : true I I 4.28 —|—P|"XYZ” —I—bl 8|6 null | | Last |
4 | 4 |

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 27 / 42

Mutable Data

Queue - first in first out (FIFO)

@ make_queue(): create an empty queue;

@ enqueue(queue, x): add x to the end of the queue;
@ dequeue (queue): delete the first item of the queue;
@ peek(queue): retrieve the value the first item of the queue;

o empty(queue): delete all items in the queue;

o is_empty_queue(queue): check if a queue is empty.

@ dequeue(queue) and peek(queue) will raise an error if the queue is
empty.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 28 / 42

Mutable Data

queue

<« «—
dequeue() enqueue()

front back

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 29 / 42

Mutable Data

Stack - first in last out (FILO)

@ make_stack(): create an empty stack;

o push(stack, x): add x on the top of the stack;
@ pop(stack): delete the first item on the top of the stack;
@ peek(stack): retrieve the first value on the top of the stack;

e empty(stack): delete all items in the stack;

o is_empty_stack(stack): check if a stack is empty.

@ pop(stack) and peek(stack) will raise an error if the stack is
empty.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 30/ 42

Push

Push
/ /P:’;E /*"
/ Pop = 2]
/ Pop

Niu Yunpeng CS1101S DG Week 9 October 17, 2017

31/ 42

Mutable Data

@ make_table(): create an empty table;

o contains(key, table): check if the table contains this key;
o put(key, value, table): insert a new entry to the table;
o

lookup(key, table): return the value corresponding to the
specified key in the table, or undefined if the key is not found;

o empty(table): delete all entries in the stack;

@ is_empty_table(table): check if a table is empty.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 32 /42

Mutable Data

g w01 e — [F— [F—{ T F—[1]

123 false
56l fee” [cs [1101 | [123 [fatse | [4s.61 [rtee”]| | true [nun |
true null

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 33 /42

Mutable Data

Usage of mutable data structure

@ Stack:
e The interpreter uses stack to implement recursion.

o Table:

e The binding between names and values in a frame is a table;
o Later, we will use table to implement memoization.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 34 /42

Overview

© Loop & array
@ while and for

o Array

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 35/

Loop & array

while and for loop

@ There are two kinds of loops available in Source:

while and for

@ They can be converted to each other.

for (E1; E2; E3) {

//

}

El;

while (E2) {
//
E3;

}

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 36 / 42

Loop & array

continue and break

@ continue: terminates the current round of the loop and continues
the loop with the next round.

@ break: terminates the current round of the loop and also terminates
the entire loop.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 37 /42

Loop & array

o Array is effectively the same as list.

@ Empty array: []
@ Array with n element: [1, 2, ..., n]

Access mth element: arr [m]

°
@ Array assignment: arr[m] = "cs"
°

Array length: array_length(arr)

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 38 /42

Loop & array

Array and list

@ List can be implemented using array.
@ pair(a, b) is just [a, b]
e list(a, b, c, d) isjust [a, [b, [c, [d, [1111]

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 39 /42

Loop & array

How to use array

@ Implement data structure
@ Implement sorting algorithm

@ Use together with loop

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 40 / 42

Discussion Group Problems

Let’s discuss them now.

CS1101S DG Week 9 October 17, 2017

The End

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 42 / 42

	Mutable data
	States & change of states
	Environment model
	Mutable data structure

	Loop & array
	while and for
	Array

