
Welcome

CS1101S Discussion Group Week 9:
Mutable Data & Array

Niu Yunpeng

niuyunpeng@u.nus.edu

October 17, 2017

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 1 / 42



Overview

1 Mutable data
States & change of states
Environment model
Mutable data structure

2 Loop & array
while and for
Array

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 2 / 42



Mutable Data

Representation of data in Source
Data is the storage of information.
Two kinds of information: states & procedures.
To represent states: use variables;
To manipulate states: use functions.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 3 / 42



Mutable Data

Before Week 8
Pure functional programming.
Substitution model.
Return value do not change if values of arguments are the same.

After Week 8
Stateful programming.
Environment model.
Return value may vary even if values of arguments are the same.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 4 / 42



Mutable Data

For stateless programming...
Once a variable has been defined, its value cannot be changed.
If we really want to change its value, it has to be assigned to a new
variable.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 5 / 42



Mutable Data

The concept of memory allocation
When we define a variable, the interpreter will allocate a position in
memory (random access memory, RAM) randomly so that we can use
it any time we want.
The name is actually the reference to this position in memory.
Whenever we call the name, the interpreter will just look for the value
stored at that position in memory.

Understanding
A variable is like a changeable container.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 6 / 42



Mutable Data

Why can we change the value of a variable?
Before, when we want to have a new value of a variable, we allocate a
new position in memory.
However, it is not necessary for us to do this at all (because this is in
fact a waste of space in memory).
We can just update the value stored at the original position. When
we call that name after that, the interpreter will still look up for the
same position and a new value will be found.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 7 / 42



Mutable Data

Environment model
Even though we supply the same values for all arguments, the return
value of a function may still vary.
Due to this, the substitution model breaks down.
We have to introduce a new one and a better one:

environment model
It is an upgrade of substitution model + variable scoping.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 8 / 42



Mutable Data

Frame
Each function call creates a new frame (similar to scope for variables).
The initial frame is called global frame (global scope).
Each frame contains a series of bindings of names and values.

Environment
In order to find the variable, it is possible to search starting from the
current local scope up to the global scope.
Thus, all these corresponding frames are deterministic to the value of
the variable. They are called the environment, a sequence of frames.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 9 / 42



Mutable Data

Frame & environment
Looks like a list.
The head is the current frame, while the tail is pointing to the parent
frames, called its enclosing environment.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 10 / 42



Mutable Data

What happens when we call a function?
Create a new frame to extend the current environment.
Evaluate actual arguments and bind their values to formal parameters.
Local variables are bound to undefined.
Evaluate the function body and send the return value to the enclosing
environment.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 11 / 42



Mutable Data

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 12 / 42



Mutable Data

Exercise 1
Assume the program stops at the comment.
Draw the environment model diagram gradually.
Also, identify the value of x at the point of that comment.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 13 / 42



Mutable Data

Exercise 1.1

var x = 0;

function environmentalist () {
x = x + 1;

function model(x) {
x = x + 2;
return x;

}

return model(x);
}
// Here
environmentalist ();
x = environmentalist ();

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 14 / 42



Mutable Data

Exercise 1.2

var x = 0;

function environmentalist () {
x = x + 1;

function model(x) {
x = x + 2;
// Here
return x;

}

return model(x);
}

environmentalist ();
x = environmentalist ();

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 15 / 42



Mutable Data

Exercise 1.3

var x = 0;

function environmentalist () {
x = x + 1;

function model(x) {
x = x + 2;
return x;

}

return model(x);
}

environmentalist ();
// Here
x = environmentalist ();

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 16 / 42



Mutable Data

Exercise 1.4

var x = 0;

function environmentalist () {
x = x + 1;

function model(x) {
x = x + 2;
return x;

}

return model(x);
}

environmentalist ();
x = environmentalist ();
// Here

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 17 / 42



Mutable Data

Exercise 2
The whole program has been evaluated.
Draw the environment model diagram.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 18 / 42



Mutable Data

Exercise 2.1

var x = 4;

function foo(x) {
var y = x * 2;

if (y === 10) {
x = x + 5;
return x;

} else {
return foo(x + 1);

}
}

foo(x);

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 19 / 42



Mutable Data

Exercise 2.2

function alpha(x) {
var y = 3;

function beta(x) {
y = y + x;
return y;

}

return beta;
}

var haha = alpha (5);
haha (1);

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 20 / 42



Mutable Data

Before today - immutable data structure
A collection of data into one object.
Data inside cannot be changed.
Constructor, accessor, predicate, printer, ...

After today - mutable data structure
A collection of data into one object.
Data inside can be changed.
Constructor, accessor (getter), mutator (setter), predicate, printer, ...

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 21 / 42



Mutable Data

Mutable pair/list
set_head(pr, x): set the head of a pair to become x;
set_tail(pr, y): set the tail of a pair to become y.

Caution
Remember identity & equality;
Remember the concept of memory allocation.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 22 / 42



Mutable Data

Things you can do for pair/list
Re-write some parts of the list library;
Create a cycle for a list.

Your task today
Can you write a program to detect the number of cycles in a given list
(or return 0 if none)?

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 23 / 42



Mutable Data

Mutable data structure
Linked list
Double-way linked list
Queue
Stack
Table
...

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 24 / 42



Mutable Data

Linked list / double-way linked list 1
make_linked_list(): create an empty linked list;
get_first(lst): get the first node of the linked list;
get_last(lst): get the first node of the linked list;
get_next(node): get the next node in the linked list;
get_prev(node): get the last node in the linked list;
get_data(node): get the data stored in the current node.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 25 / 42



Mutable Data

Linked list / double-way linked list 2
prepend(lst, x): add x to the front of the linked list;
append(lst, x): add x to the rear of the linked list;
add_before(node, x): add x before the node;
add_after(node, x): add x after the node;
remove_first(lst): delete the first node in the linked list;
remove_last(lst): delete the last node in the linked list;
delete(node): delete the selected node in the linkd list;
empty(lst): delete all items in the linked list;
is_empty_linked_list(lst): check if a linked list is empty.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 26 / 42



Mutable Data

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 27 / 42



Mutable Data

Queue - first in first out (FIFO)
make_queue(): create an empty queue;
enqueue(queue, x): add x to the end of the queue;
dequeue(queue): delete the first item of the queue;
peek(queue): retrieve the value the first item of the queue;
empty(queue): delete all items in the queue;
is_empty_queue(queue): check if a queue is empty.

Notice
dequeue(queue) and peek(queue) will raise an error if the queue is
empty.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 28 / 42



Mutable Data

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 29 / 42



Mutable Data

Stack - first in last out (FILO)
make_stack(): create an empty stack;
push(stack, x): add x on the top of the stack;
pop(stack): delete the first item on the top of the stack;
peek(stack): retrieve the first value on the top of the stack;
empty(stack): delete all items in the stack;
is_empty_stack(stack): check if a stack is empty.

Notice
pop(stack) and peek(stack) will raise an error if the stack is
empty.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 30 / 42



Mutable Data

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 31 / 42



Mutable Data

Table
make_table(): create an empty table;
contains(key, table): check if the table contains this key;
put(key, value, table): insert a new entry to the table;
lookup(key, table): return the value corresponding to the
specified key in the table, or undefined if the key is not found;
empty(table): delete all entries in the stack;
is_empty_table(table): check if a table is empty.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 32 / 42



Mutable Data

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 33 / 42



Mutable Data

Usage of mutable data structure
Stack:

The interpreter uses stack to implement recursion.
Table:

The binding between names and values in a frame is a table;
Later, we will use table to implement memoization.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 34 / 42



Overview

1 Mutable data
States & change of states
Environment model
Mutable data structure

2 Loop & array
while and for
Array

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 35 / 42



Loop & array

while and for loop
There are two kinds of loops available in Source:

while and for

They can be converted to each other.
for (E1; E2; E3) {

// ...
}

E1;
while (E2) {

// ...
E3;

}

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 36 / 42



Loop & array

continue and break
continue: terminates the current round of the loop and continues
the loop with the next round.
break: terminates the current round of the loop and also terminates
the entire loop.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 37 / 42



Loop & array

Array
Array is effectively the same as list.
Empty array: []

Array with n element: [1, 2, ..., n]

Access mth element: arr[m]

Array assignment: arr[m] = "cs"

Array length: array_length(arr)

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 38 / 42



Loop & array

Array and list
List can be implemented using array.
pair(a, b) is just [a, b]

list(a, b, c, d) is just [a, [b, [c, [d, []]]]]

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 39 / 42



Loop & array

How to use array
Implement data structure
Implement sorting algorithm
Use together with loop

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 40 / 42



Discussion Group Problems

Let’s discuss them now.

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 41 / 42



End

The End

Niu Yunpeng CS1101S DG Week 9 October 17, 2017 42 / 42


	Mutable data
	States & change of states
	Environment model
	Mutable data structure

	Loop & array
	while and for
	Array


