
Welcome

CS1101S Discussion Group Week 10:
Memoization & Object-oriented Programming

Niu Yunpeng

niuyunpeng@u.nus.edu

October 24, 2017

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 1 / 48

The Real Essence

Never write code.

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 2 / 48

The Real Essence

Write programs!

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 3 / 48

Overview

1 Memoization
Inspiration
To use memoizationn
Memoization & tabulation

2 Object-oriented concepts
Class, object & instance

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 4 / 48

Memoization

Inspiration from Fibonacci

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 5 / 48

Memoization

Why is this version of Fibonacci bad?
Because it repeats solving the same sub-programs.
A waste of resources both in time and space.

Suggestion
Solve each sub-problem only once, and use the result repeatedly.

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 6 / 48

Memoization

A straightforward example

function slow_example (x) {
if (x > 100) {

return 1;
} else {

return slow_example (x + 3) + slow_example (x + 3);
}

}

slow_example (2);

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 7 / 48

Memoization

A straightforward example

function fast_example (x) {
if (x > 100) {

return 1;
} else {

return fast_example (x + 3) * 2;
}

}

fast_example (2);

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 8 / 48

Memoization

A straightforward principle
DRY!
Don’t repeat youself!

Significance
The DRY principle is the underlying reason for:

abstraction/wishful thinking
modular design
memoization/dynamic programming
...

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 9 / 48

Memoization

Memoization
How can we repeatedly use the results previously been computed?
Store them and access the data whenever in need.

Problem...
We need to store a lot of data.
We need a proper data structure.

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 10 / 48

Memoization

To choose a proper data structure
What to store: the results for every value of the function parameter,
like fibo(1), fibo(2), fibo(3), etc.
How to store: store in a linear data structure, like array or table.
When the function has 1 parameter, use 1D list/array.
When the function has 2 parameters, use 2D list/array.
...

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 11 / 48

Memoization

List or array?
List is better if we can store data incrementally, like 1, 2, 3, ...
If we cannot store them one by one in the incremental order, then it
will become meaningless when we access the data using
list_ref(lst, n).

Thus...
We should choose to use array.
After we solve a new problem, add arr[n + 1].

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 12 / 48

Memoization

memoize

function memoize (func) {
var arr = [];

return function (x) {
if (arr[x] != undefined) {

return arr[x];
} else {

var result = func(x);
arr[x] = result ;

return result ;
}

};
}

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 13 / 48

Memoization

Problem here!
For each element in arr, its index is the parameter n, the value is the
return value func(n).
But, what if the values of the parameter is not “positive integers”?

Although JavaScript allows everything to be used as index, that is bad
programming practice. It is not supported in other languages as well.

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 14 / 48

Memoization

Solution
Create an abstract data structure, called table or dictionary.
It has a lot of entries, just like array.

Each entry has an index and a value, just like array.
In fact, it should be implemented using array!

The only difference: index does not have to be positive integers!

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 15 / 48

Memoization

Example
The possible values of the parameter are -2, -1, 0, 1, 2, ...

Table will just use arr[n + 3] rather than arr[n]

The possible values are 0.5, 1, 1.5 ...
Table will just use arr[n * 2] rather than arr[n]

The possible values are ..., -3, -2, -1, 0, 1, 2, ...
How?

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 16 / 48

Memoization

Understanding
Table or dictionary is simply a small improvement to array (by using a
map on index).
However, it is only helpful on some special cases.

What if possible values are all real numbers?
Table or dictionary cannot help as well.

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 17 / 48

Memoization

To use table or dictionary
Use make_table() rather than var arr = []

Use contains() rather than XXX !== undefined

Use put() rather than arr[?] = XXX

Use lookup() rather than return arr[?]

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 18 / 48

Memoization

memoize

function memoize (func) {
var table = make_table ();

return function (x) {
if (contains (x, table)) {

return lookup (x, table);
} else {

var result = func(x);
put(x, result , table);

return result ;
}

};
}

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 19 / 48

Memoization

memoize_2d

function memoize_2d (func) {
var table = make_2d_table ();

return function (x, y) {
if (contains (x, y, table)) {

return lookup (x, y, table);
} else {

var result = func(x, y);
put(x, y, result , table);

return result ;
}

};
}

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 20 / 48

Memoization

A few examples using memoization
Fibonacci
k-combination
coin_change
...

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 21 / 48

Memoization

Fibonacci

function fibo(n) {
if (n <= 1) {

return n;
} else {

return fibo(n - 1) + fibo(n - 2);
}

}

Think about it...
Time/space complexity

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 22 / 48

Memoization

Use memoize to improve Fibonacci

var memo_fib = memoize (function (n) {
return n <= 1 ? n : memo_fib (n - 1) + memo_fib (n - 2);

});

Reason
Never solve the same sub-problem again.
DRY!

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 23 / 48

Memoization

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 24 / 48

Memoization

Another k-combination
No need to list all possible k-combinations.
We only want to count the number of k-combinations.
After that, we try to use memoize to improve it.

Thus...
We do not care about the actual values for n items in the list.
We use their indexes 1, 2, ..., n to represent them.

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 25 / 48

Memoization

k-combination

function k_combination (n, k) {
if (k > n) {

return 0;
} else if (k === 0) {

return 1;
} else {

return k_combination (n - 1, k - 1) +
k_combination (n - 1, k);

}
}

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 26 / 48

Memoization

Use memoize_2d to improve k-combination

var memo_k_combination = memoize_2d (function (n, k) {
if (k > n) {

return 0;
} else if (k = 0) {

return 1;
} else {

return memo_k_combination (n - 1, k - 1) +
memo_k_combination (n - 1, k);

}
});

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 27 / 48

Memoization

coin_change problem
Find the number of ways to make changes.
Still remember?

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 28 / 48

Memoization

coin_change problem

function coin_change (amount , kind) {
if (amount === 0) {

return 1;
} else if (amount < 0 || kind === 0) {

return 0;
} else {

return coin_change (amount , kind - 1) +
coin_change (amount - value(kind), kind);

}
}

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 29 / 48

Memoization

Use memoize_2d to improve coin_change

var memo_coin_change = memoize_2d (function (amount , kind) {
if (amount === 0) {

return 1;
} else if (amound < 0 || kind === 0) {

return 0;
} else {

return memo_coin_change (amount , kind - 1) +
memo_coin_change (amount - value(kind), kind);

}
});

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 30 / 48

Memoization

An interesting fact
“memoization” is a domain-specific word.
If you look it up in the dictionary, you cannot find it.
A similar word is “memoris(z)ation”. But we didn’t misspell it.
“memoization” is only used in Computer Science.

Domain-specific language (DSL)
In CS, DSL is actually a kind of programming languages.
Google this term and you will find some interesting things.

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 31 / 48

Memoization

Review: two approaches
Iteration: the buttom-up approach;
Recursion: the top-down approach.

Recall: why do we use array/table rather than list?
We may not traverse in the incremental order 1, 2, ..., n.
Using list_ref(lst, n) is meaningless.

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 32 / 48

Memoization

Think about memoization again
Is it the buttom-up approach or top-down approach?

Look at it...

var memo_fib = memoize (function (n) {
return n <= 1 ? n : memo_fib (n - 1) + memo_fib (n - 2);

});

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 33 / 48

Memoization

Memoization & tabulation
Memoization: top-down approach;
Tabulation: buttom-up approach.

Data structure
Memoization: table;
Tabulation: table or list (array).

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 34 / 48

Memoization

To use tabulation
To use tabulation, we will start from the smallest sub-problems.
Then, we will solve larger and larger sub-problems until the whole
problem has been solved.

Example
If we use tabulation for Fibonacci, we will solve sub-problems in the
incremental order, like fibo(1), fibo(2), fibo(3), ...
Due to the incremental order, we can also use list.

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 35 / 48

Memoization

Practical usage of memoization
CPU cache
SQL execution plan caching
...

Practical usage of tabulation
Constant library
...

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 36 / 48

Memoization

Dynamic programming
Dynamic programming (DP) is a technique for solving problems
recursively and is applicable when the computations of the
subproblems overlap.
Memoization and tabulation are two approaches for DP.

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 37 / 48

Overview

1 Memoization
Inspiration
To use memoizationn
Memoization & tabulation

2 Object-oriented concepts
Class, object & instance

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 38 / 48

Object-oriented Programming

Our world...
Our world is only a collection of objects.
They have various states and behaviours.
They belong to their own class.
Objects in the same class are similar.
...

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 39 / 48

Object-oriented Programming

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 40 / 48

Object-oriented Programming

Terminology
Class
Object
Instance
Field
Attribute
Method
Constructor
Inheritance
Polymorphism
Override
...

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 41 / 48

Object-oriented Programming

Object in JavaScript
Object in JavaScript is just a more generic version of array.
It looks like
var obj = {"aa": 4,

"bb": true ,
"cc": function (x) { return x * x; } };

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 42 / 48

Object-oriented Programming

Object in JavaScript
Using object is really similar to using array.
It looks like
obj["aa"];
obj["bb"];
obj["cc"](5); // returns 25

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 43 / 48

Object-oriented Programming

Dot operator in JavaScript
Dot operator is a shortcut for object accessor.
Thus, it looks like
obj.aa;
obj.bb;
obj.cc (5); // returns 25

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 44 / 48

Object-oriented Programming

Objects can become similar
See these two objects
var smith = {

"name": "Smith",
"age": 35

}

var marc = {
"name": "Marc",
"age": 26

}

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 45 / 48

Object-oriented Programming

Constructor in JavaScript
Constructor is a shortcut for building objects.
Especially useful for building objects with similar structure.
function Person (name , age) {

this.name = name;
this.age = age;

}

var this_person = new Person ("Smith", 35);
var that_person = new Person ("Marc", 26);

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 46 / 48

Discussion Group Problems

Let’s discuss them now.

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 47 / 48

End

The End

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 48 / 48

	Memoization
	Inspiration
	To use memoizationn
	Memoization & tabulation

	Object-oriented concepts
	Class, object & instance

