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The Real Essence

Never write code.
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The Real Essence

Write programs!
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Overview

1 Memoization
Inspiration
To use memoizationn
Memoization & tabulation

2 Object-oriented concepts
Class, object & instance
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Memoization

Inspiration from Fibonacci
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Memoization

Why is this version of Fibonacci bad?
Because it repeats solving the same sub-programs.
A waste of resources both in time and space.

Suggestion
Solve each sub-problem only once, and use the result repeatedly.
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Memoization

A straightforward example

function slow_example (x) {
if (x > 100) {

return 1;
} else {

return slow_example (x + 3) + slow_example (x + 3);
}

}

slow_example (2);
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Memoization

A straightforward example

function fast_example (x) {
if (x > 100) {

return 1;
} else {

return fast_example (x + 3) * 2;
}

}

fast_example (2);
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Memoization

A straightforward principle
DRY!
Don’t repeat youself!

Significance
The DRY principle is the underlying reason for:

abstraction/wishful thinking
modular design
memoization/dynamic programming
...
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Memoization

Memoization
How can we repeatedly use the results previously been computed?
Store them and access the data whenever in need.

Problem...
We need to store a lot of data.
We need a proper data structure.
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Memoization

To choose a proper data structure
What to store: the results for every value of the function parameter,
like fibo(1), fibo(2), fibo(3), etc.
How to store: store in a linear data structure, like array or table.
When the function has 1 parameter, use 1D list/array.
When the function has 2 parameters, use 2D list/array.
...
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Memoization

List or array?
List is better if we can store data incrementally, like 1, 2, 3, ...
If we cannot store them one by one in the incremental order, then it
will become meaningless when we access the data using
list_ref(lst, n).

Thus...
We should choose to use array.
After we solve a new problem, add arr[n + 1].
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Memoization

memoize

function memoize (func) {
var arr = [];

return function (x) {
if (arr[x] != undefined ) {

return arr[x];
} else {

var result = func(x);
arr[x] = result ;

return result ;
}

};
}
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Memoization

Problem here!
For each element in arr, its index is the parameter n, the value is the
return value func(n).
But, what if the values of the parameter is not “positive integers”?

Although JavaScript allows everything to be used as index, that is bad
programming practice. It is not supported in other languages as well.

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 14 / 48



Memoization

Solution
Create an abstract data structure, called table or dictionary.
It has a lot of entries, just like array.

Each entry has an index and a value, just like array.
In fact, it should be implemented using array!

The only difference: index does not have to be positive integers!
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Memoization

Example
The possible values of the parameter are -2, -1, 0, 1, 2, ...

Table will just use arr[n + 3] rather than arr[n]

The possible values are 0.5, 1, 1.5 ...
Table will just use arr[n * 2] rather than arr[n]

The possible values are ..., -3, -2, -1, 0, 1, 2, ...
How?
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Memoization

Understanding
Table or dictionary is simply a small improvement to array (by using a
map on index).
However, it is only helpful on some special cases.

What if possible values are all real numbers?
Table or dictionary cannot help as well.
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Memoization

To use table or dictionary
Use make_table() rather than var arr = []

Use contains() rather than XXX !== undefined

Use put() rather than arr[?] = XXX

Use lookup() rather than return arr[?]
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Memoization

memoize

function memoize (func) {
var table = make_table ();

return function (x) {
if ( contains (x, table)) {

return lookup (x, table);
} else {

var result = func(x);
put(x, result , table);

return result ;
}

};
}
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Memoization

memoize_2d

function memoize_2d (func) {
var table = make_2d_table ();

return function (x, y) {
if ( contains (x, y, table)) {

return lookup (x, y, table);
} else {

var result = func(x, y);
put(x, y, result , table);

return result ;
}

};
}
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Memoization

A few examples using memoization
Fibonacci
k-combination
coin_change
...
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Memoization

Fibonacci

function fibo(n) {
if (n <= 1) {

return n;
} else {

return fibo(n - 1) + fibo(n - 2);
}

}

Think about it...
Time/space complexity
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Memoization

Use memoize to improve Fibonacci

var memo_fib = memoize ( function (n) {
return n <= 1 ? n : memo_fib (n - 1) + memo_fib (n - 2);

});

Reason
Never solve the same sub-problem again.
DRY!
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Memoization
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Memoization

Another k-combination
No need to list all possible k-combinations.
We only want to count the number of k-combinations.
After that, we try to use memoize to improve it.

Thus...
We do not care about the actual values for n items in the list.
We use their indexes 1, 2, ..., n to represent them.
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Memoization

k-combination

function k_combination (n, k) {
if (k > n) {

return 0;
} else if (k === 0) {

return 1;
} else {

return k_combination (n - 1, k - 1) +
k_combination (n - 1, k);

}
}
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Memoization

Use memoize_2d to improve k-combination

var memo_k_combination = memoize_2d ( function (n, k) {
if (k > n) {

return 0;
} else if (k = 0) {

return 1;
} else {

return memo_k_combination (n - 1, k - 1) +
memo_k_combination (n - 1, k);

}
});
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Memoization

coin_change problem
Find the number of ways to make changes.
Still remember?
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Memoization

coin_change problem

function coin_change (amount , kind) {
if ( amount === 0) {

return 1;
} else if ( amount < 0 || kind === 0) {

return 0;
} else {

return coin_change (amount , kind - 1) +
coin_change ( amount - value(kind), kind);

}
}
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Memoization

Use memoize_2d to improve coin_change

var memo_coin_change = memoize_2d ( function (amount , kind) {
if ( amount === 0) {

return 1;
} else if ( amound < 0 || kind === 0) {

return 0;
} else {

return memo_coin_change (amount , kind - 1) +
memo_coin_change ( amount - value(kind), kind);

}
});
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Memoization

An interesting fact
“memoization” is a domain-specific word.
If you look it up in the dictionary, you cannot find it.
A similar word is “memoris(z)ation”. But we didn’t misspell it.
“memoization” is only used in Computer Science.

Domain-specific language (DSL)
In CS, DSL is actually a kind of programming languages.
Google this term and you will find some interesting things.
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Memoization

Review: two approaches
Iteration: the buttom-up approach;
Recursion: the top-down approach.

Recall: why do we use array/table rather than list?
We may not traverse in the incremental order 1, 2, ..., n.
Using list_ref(lst, n) is meaningless.
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Memoization

Think about memoization again
Is it the buttom-up approach or top-down approach?

Look at it...

var memo_fib = memoize ( function (n) {
return n <= 1 ? n : memo_fib (n - 1) + memo_fib (n - 2);

});
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Memoization

Memoization & tabulation
Memoization: top-down approach;
Tabulation: buttom-up approach.

Data structure
Memoization: table;
Tabulation: table or list (array).
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Memoization

To use tabulation
To use tabulation, we will start from the smallest sub-problems.
Then, we will solve larger and larger sub-problems until the whole
problem has been solved.

Example
If we use tabulation for Fibonacci, we will solve sub-problems in the
incremental order, like fibo(1), fibo(2), fibo(3), ...
Due to the incremental order, we can also use list.
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Memoization

Practical usage of memoization
CPU cache
SQL execution plan caching
...

Practical usage of tabulation
Constant library
...
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Memoization

Dynamic programming
Dynamic programming (DP) is a technique for solving problems
recursively and is applicable when the computations of the
subproblems overlap.
Memoization and tabulation are two approaches for DP.
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Overview

1 Memoization
Inspiration
To use memoizationn
Memoization & tabulation

2 Object-oriented concepts
Class, object & instance
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Object-oriented Programming

Our world...
Our world is only a collection of objects.
They have various states and behaviours.
They belong to their own class.
Objects in the same class are similar.
...
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Object-oriented Programming
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Object-oriented Programming

Terminology
Class
Object
Instance
Field
Attribute
Method
Constructor
Inheritance
Polymorphism
Override
...
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Object-oriented Programming

Object in JavaScript
Object in JavaScript is just a more generic version of array.
It looks like
var obj = {"aa": 4,

"bb": true ,
"cc": function (x) { return x * x; } };
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Object-oriented Programming

Object in JavaScript
Using object is really similar to using array.
It looks like
obj["aa"];
obj["bb"];
obj["cc"](5); // returns 25
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Object-oriented Programming

Dot operator in JavaScript
Dot operator is a shortcut for object accessor.
Thus, it looks like
obj.aa;
obj.bb;
obj.cc (5); // returns 25
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Object-oriented Programming

Objects can become similar
See these two objects
var smith = {

"name": "Smith",
"age": 35

}

var marc = {
"name": "Marc",
"age": 26

}

Niu Yunpeng CS1101S DG Week 10 October 24, 2017 45 / 48



Object-oriented Programming

Constructor in JavaScript
Constructor is a shortcut for building objects.
Especially useful for building objects with similar structure.
function Person (name , age) {

this.name = name;
this.age = age;

}

var this_person = new Person ("Smith", 35);
var that_person = new Person ("Marc", 26);
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Discussion Group Problems

Let’s discuss them now.
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End

The End
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