CS1101S Discussion Group Week 11:
Object-oriented Programming

Niu Yunpeng
niuyunpeng@u.nus.edu

October 31, 2017

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 1/33

Overview

@ From last week
@ Object

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 2/33

From Last Week

@ Object is a collection of key-value pairs;

@ Object is a generalization of “traditional” array;

o Key is string, value can be anything (function, data structure)

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 3/33

Object-oriented Programming

Object accessor

@ Using object is really similar to using array.

var obj = {"aa": 4,

"bb": true,

"cc": function(x) { returmn x * x; } I};
ObJ ["aa"
ObJ [ubbn] 8

obj["cc"]1(5); // returns 25

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 4 /33

Object-oriented Programming

Dot operator

@ Dot operator is a shortcut for object accessor.

var obj = {"aa": 4,

"bb": true,

"cc": function(x) { returmn x * x; } I};
obj.aa;
obj.bb;

obj.cc(5); // returns 25

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 5/33

Overview

© Object-oriented concepts
@ Field, attribute, & method
@ Inheritance & polymorphism

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 6 /33

Object-oriented Programming

Terminology

o Class
Object
Instance
Field
Attribute
Method

Constructor

Inheritance
Polymorphism

Override

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 7 /33

Object-oriented Programming

Class, object & instance

o Class: a blueprint/template of all the things of one type.
@ Object: a particular thing of one type.

@ Instance: a unique copy of information for an object in memory.

Relationship

o (class_name) includes many (object_name)s.

@ (object_name) is a (class_name).

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 8 /33

Object-oriented Programming

o Class: Country

@ Objects: Singapore, China, Russia,...

Relationship
@ Country includes Singapore, China and Russia.

@ Singapore is a Country.
@ China is a Country.

@ Russia is a Country.

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 9 /33

Object-oriented Programming

To describe an object

@ Use adjectives: how large? how long? how old? ...
or equivalent to:
Use nouns: size, length, age, ...

@ Use verbs: can jump? can swim? can speak?

e Use adjectives/nouns to describe states;

@ Use verbs to describe behaviours.

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 10 / 33

Object-oriented Programming

Property & method

@ Property: variables that describes states of an object;

@ Method: functions that operate on an object.

Relationship

@ (class_name) or (obj_name) has many properties.

o Fields/attributes/methods describes (class_name) or (obj_name).

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 11 /33

Object-oriented Programming

@ Class: Student

@ Properties: name, age, major, ...

o Methods: study, play, ...

Relationship

@ name, age and major describes a Student.

@ A Student can study and play.

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 12 /33

Object-oriented Programming

@ Constructor: to create a new instance of a class and perform related
initialization actions.

e Usually, the constructor will set the initial values of compulsory fields.

Relationship

@ We use the constructor to instantiate a copy of (class_name) to get
a new (obj_name).

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 13 /33

Object-oriented Programming

Common patterns between different classes

@ We know there are a lot of common patterns within a class.

@ However, different classes may also have common patterns.

Problem...
@ How can we share common patterns between different classes?

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 14 / 33

Object-oriented Programming

@ Inheritance: abstract the common patterns into one superclass, and
keep the specification within each subclass.

Polymorphism

@ Polymorphism: the same method may behave in different ways due to
different and potentially heterogeneous implementations.

@ Polymorphism in OOP is usually achieved via method override.

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 15 / 33

Object-oriented Programming

@ Override
@ Overwrite

@ Overload

Your task today
@ Find out the difference between these three terms.

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 16 / 33

Object-oriented Programming

Relationship

o A (super_class_name) has many (sub_class_name)s.
@ A (sub_class_name) belongs to a (super_class_name).

o A (sub_class_name) inherits from its (super_class_name).

Diagram

@ We can draw a diagram to visualize the hierarchy relationship
between all the superclasses and subclasses.

@ The diagram is going to be a tree.

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 17 / 33

Object-oriented Programming

GameObject

name: string = position: Vector2D,
velocity: Vector2D

etName
g 0 getPosition(),
move(time)
]
e e
age: int, gender: enum capacity: int
speak(words) board(Person)

I I
[} | }
T O T

title: string, major: string, year: int country: enum model: enum
office_address: string

study(materials lecture(words, move(time
lecture(words) W) () ()

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 18/

Overview

© Object-oriented programming in Source

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 19 / 33

Object-oriented Programming

A few keywords

@ new

o this

@ Inherits
@ prototype

@ _ proto_

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 20/ 33

Object-oriented Programming

Class & object

@ The class name is the same as the constructor name.

@ An object can be created by calling its constructor with new.

Naming convention

@ By convention, the first letter of class name should be uppercase.

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 21 /33

Object-oriented Programming

function Person(name, age) {
this.name = name;
this.age = age;
}
var this_person = new Person("Smith", 35);

Think about it...

@ What should we do in the constructor?

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 22 /33

Object-oriented Programming

Field & method

@ To declare/access a field, use this keyword.

@ To declare a method, add it into the prototype object of the class.

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 23 /33

Object-oriented Programming

To declare a method

@ Functions are also variables, methods are also fields.

@ Technically, you can declare a method in the same way as a normal
field: use this keyword and the dot operator.

@ However, you should never do so.

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 24 /33

Object-oriented Programming

Why prototype object?

@ If you use the prototype object, there will be only one copy for
methods (because it does not belong to the instances).

@ For normal fields, we advise to make one copy for every object.

@ For methods, we advise to make only one copy for the class.
Think about it...
@ Can you do OOP without prototype at all?

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 25 /33

Object-oriented Programming

Example
function Person(name, age) {
this.name = name;
this.age = age;
}
Person.prototype.speak = function (words) {
display(this.name + " says: " + words);
};
var this_person = new Person("Smith", 35);
this_person.speak("Hello, world!");

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 26 / 33

Object-oriented Programming

To inherit from the superclass:
@ call the superclass constructor to initialize the parent object;

@ use the Inherits keyword to inherit all methods.

Polymorphism
@ to override a method, re-define it in the subclasses.

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 27 / 33

Object-oriented Programming

Example

function Student (name, age, year, major) {
Person.call(this, name, age);
this.year = year;
this.major = major;

}

Student . Inherits (Person) ;

Student .prototype.speak = function (words, university) {
display(this.name + " says: " + words);
display ("I am a student from " + university + ".");
s

var my_student = new Student("Smith", 35, 1, "CS");

Niu Yunpeng CS1101S DG Week 11 October 31, 2017

28 / 33

Object-oriented Programming

Three ways to call a method

@ simply use the function name;
@ use (function_name) .call so as to pass the instance fields;

@ use (class__name) .prototype. (function_name) .call to call the
method from a certain class

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 29 /33

Object-oriented Programming

For the 3™ way

@ Especially useful due to polymorphism.

@ In the prototype chain, the interpreter will find the nearest version of
the method and call it.

o If you explicitly declare the class, it can find another version.

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 30/ 33

Object-oriented Programming

Example

Student .prototype.introduce = function() {
Person.prototype.speak.call(this, "Hello, everyone!");
this.speak ("My name is " + this.name + ".", "NUS");

};

var my_student = new Student("Smith", 35, 1, "CS");
my_student.introduce () ;

// Smith says: Hello, everyone!
// Smith says: My name is Smith.
// I am a student from NUS.

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 31/33

Discussion Group Problems

Let’s discuss them now.

CS1101S DG Week 11 October 31, 2017 32/33

The End

Niu Yunpeng CS1101S DG Week 11 October 31, 2017 33 /33

	From last week
	Object

	Object-oriented concepts
	Field, attribute, & method
	Inheritance & polymorphism

	Object-oriented programming in Source

