
Welcome

CS1101S Studio Session Week 2:
Computation, Source Language & Abstraction

Niu Yunpeng

niuyunpeng@u.nus.edu

August 21, 2018

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 1 / 50

Overview

1 Computation
What is computation
Computation & programming language

2 The Source language
Why Source?
Components of a programming language
Source language details

3 Abstraction
Black-box abstraction

4 To write good programs

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 2 / 50

Computer Science & Computation

Mathematics vs Computer Science

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 3 / 50

Computer Science & Computation

Mathematics
The declarative knowledge
The "what-is" knowledge
Defines what the problem is

Computer Science
The imperative knowledge
The "how-to" knowledge
Tells how to solve the problem

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 4 / 50

Computer Science & Computation

Square root for a mathematician
The square root of a non-negative number x is a non-negative number y
such that the square of y is x. Symbolically, for every non-negative number
x , y = √x if x = y2 ∩ y ≥ 0.
(We do not consider complex numbers here.)

Square root for a computer scientist
In order to find an approximation of √x ,

Make a guess of y;
Calculate the average of y and x/y ;
Keep improving the guess until it is good enough.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 5 / 50

Computer Science & Computation

From Computer Science to Computation
To write a program = to express a computational process.
Usually, we prefer a more effective computational process.
A computational processes is composed of many procedures, each
of which is a program.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 6 / 50

Computation & Programming Language

How to communicate a mathematical process
After hundreds of years, mathematicians have defined a full set of
notations to express the mathematical communication formally.
The most basic ones are +,−,×,÷.

How to communicate a computational process
Although Computer Science is much younger, we did/are doing/will
continue to do similar things.
They are called programming languages.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 7 / 50

Computation & Programming Language

To summarize
Computation - the process of solving problems
Program - the individual procedure of the computational processes
Programming language - the tool to communicate in CS

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 8 / 50

Overview

1 Computation
What is computation
Computation & programming language

2 The Source language
Why Source?
Components of a programming language
Source language details

3 Abstraction
Black-box abstraction

4 To write good programs

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 9 / 50

The Source Language

About the Source
Offical tailor-made programming language for CS1101S.
A sub-language of JavaScript.
Used to be called JediScript.

Source Playground
Standalone version at
https://sourceacademy.nus.edu.sg/playground/.
Embedded version in the Source Academy.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 10 / 50

https://sourceacademy.nus.edu.sg/playground/

The Source Language

Components of a programming language
Primitives
Combination
Abstraction

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 11 / 50

The Source Language

Components of a programming language
Primitives:
The smallest constituent unit of a programming language.
Combination:
Ways to put primitives together.
Abstraction:
The method to simplify the messy combinations.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 12 / 50

Details - Primitives

Primitive Data
Numerals:
Booleans:
Strings:

Primitive Procedures
Basic algebra:

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 13 / 50

Details - Primitives

Primitive Data
Numerals: 6, -54, 0, 123.45, 11.5e2, NaN, etc.
Booleans: true, false
Strings: "Singapore", "N", ’1101’, etc.

Primitive Procedures
Basic algebra: +,−,×,÷, %.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 14 / 50

Details - Primitives

What are primitives?
The smallest constituent unit of a programming language.

How to understand?
The story of atom in chemistry.
The story of primitive in CS.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 15 / 50

Details - Combination

Means of combination
Of course, just put primitives together, "combine"!

Wait, how to put them together?
Apply operators on operands (and thus become an expression).

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 16 / 50

Details - Combination

A simple example
Operand: 1, 2
Operator: +
Expression (result of combination): 1 + 2

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 17 / 50

Details - Combination

But, is this enough?
No, operands can become combination as well.

Another example
Operand: 1 + 2, 3 + 4
Operator: *
Complex expression (combination of combination): (1 + 2) * (3 + 4)

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 18 / 50

Details - Combination

More operators
Arithmetic operators:
Comparison operators:
Boolean operators:
Conditional operators:

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 19 / 50

Details - Combination

More operators
Arithmetic operators: +,−,×,÷, %.
Comparison operators: >, <,≥,≤, ===, ! ==.
Boolean operators: &&, ||, !.
Conditional operators: <stmt-a> ? <stmt-b> : <stmt-c>.

Caution
What is the difference between =, == and ===?

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 20 / 50

Details - Combination

Is combination really that simple?
Maybe yes, if you are adding two integers.
But, what if you need to add two complex numbers?
What if you need to add two vectors?
What if you need to add two electrical signals?
...

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 21 / 50

Details - Combination

To point out
The same combination can be appiled to

Two very simple objects; or
Two very complicated objects.

Combination shall provide a generic interface (a convention) so that
We can (theoretically) combine everything as long as the convention is
not broken.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 22 / 50

Details - Abstraction

Means of abstraction
To abstract data: use naming;
To abstract procedures: use functions.
Sometimes, naming and functions are combined together.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 23 / 50

Details - Abstraction

Naming
To give a name to some data.
When referring to that data in the future, use its name instead.
In Source, use const name = data; to name a new constant.

There are more ways of naming, such as using let and var.
We will touch them in a few weeks’ time.

Functions
To abstract a procedure: use functions.
Two steps to use a function: define a function, apply a function.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 24 / 50

Details - Abstraction

Example
Given the radius of a circle, please write a function to calculate the
area of this circle.

Notice
You are only allowed to use the 2nd abstraction technique: functions.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 25 / 50

Details - Abstraction

Answer
The area of a circle with a radius of 3:

(function (x) { return 3.14159 * x * x; })(3);

The area of a circle with a radius of 5.6:
(function (x) { return 3.14159 * x * x; })(5.6);

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 26 / 50

Details - Abstraction

Naming of functions
Waste of time to repeat writing the same expressions.
Solution: Give them names.
Why: Combination of means of abstraction.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 27 / 50

Details - Abstraction

Example again
To calculate the area of a circle:
const pi = 3.1415926535;
const circle = function (x) { return pi * x * x; };

Thus..
The area of a circle with a radius of 3: circle(3);

The area of a circle with a radius of 5.6: circle(5.6);

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 28 / 50

Details - Abstraction

Naming of functions - another way to write

const pi = 3.1415926535;

function circle (x) {
return pi * x * x;

}

To use them - the same
The area of a circle with a radius of 3: circle(3);

The area of a circle with a radius of 5.6: circle(5.6);

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 29 / 50

Details - Abstraction

Naming of functions - use pre-defined constants

function circle (x) {
return math_PI * x * x;

}

To use them - the same
The area of a circle with a radius of 3: circle(3);

The area of a circle with a radius of 5.6: circle(5.6);

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 30 / 50

The Source Language

To summarize
Primitives: primitive data & primitive procedures;
Combination: expression = operands + operators;
Abstraction: naming (for data) & functions (for procedures).

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 31 / 50

The Source Language

A few terms before we continue...
Solution to a problem
Computational Process
Program
Statement
Expression

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 32 / 50

The Source Language

A few terms before we continue...
To find the solution to a problem, we are essentially trying to find a
computational process. This process is usually described by a program.
A program consists of many statements, each of which ends with a
semicolon.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 33 / 50

The Source Language

Why the semicolon “;”?
A statement is an instruction to tell the Source to execute something.
That “something” is a kind of basic action, which is the expression.
Therefore, the semicolon changes an action into an instruction (so
changes an expression into a statement).

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 34 / 50

Overview

1 Computation
What is computation
Computation & programming language

2 The Source language
Why Source?
Components of a programming language
Source language details

3 Abstraction
Black-box abstraction

4 To write good programs

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 35 / 50

Black-box Abstraction

The black-box concept

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 36 / 50

Black-box Abstraction

Why do we need the black-box?
Because, for the details inside the box:

I do not know.
I cannot know.
I don’t want to know.
I don’t need to know.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 37 / 50

Black-box Abstraction

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 38 / 50

Black-box Abstraction

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 39 / 50

Black-box Abstraction

You already accept this “black-box” concept!
Do you know about the internal representation of primitives?
But, do you use primitives?

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 40 / 50

Black-box Abstraction

Example
The area of a circle with a radius of 3: circle(3);

Why? I don’t need to know!

So, what do you know?
I know:

circle(?); will give me the area of a circle with a radius of ?.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 41 / 50

Overview

1 Computation
What is computation
Computation & programming language

2 The Source language
Why Source?
Components of a programming language
Source language details

3 Abstraction
Black-box abstraction

4 To write good programs

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 42 / 50

To Write Good Programs

What is a good program?
Be correct.
Be strong.
Be clear.
Be beautiful.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 43 / 50

To Write Good Programs

What is a good program?
Be correct:
Make sure it gives the correct answer.
Be strong:
Make sure it is still correct for corner cases.
Be clear:
Write proper comments to help others understand.
Be beautiful:
Follow the naming convention and other style requirments.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 44 / 50

To Write Good Programs

Good coding style
How to write comments?
How to give names?
Where to put whitespaces?
Where to put line breaks?
Where to put curly braces?
How to use indentation?

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 45 / 50

To Write Good Programs

Example

// Calculates the factorial of a non - negative integer n.
function factorial (n) {

// By definition , the factorial of 0 is 1.
if (n === 0) {

return 1;
} else {

return factorial (n - 1) * n;
}

}

var x = 5;
factorial (2 * x);

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 46 / 50

To Write Good Programs

Write good programs in your submission
In all missions and sidequests, the deduction of marks for bad coding
styles may be a lot.
A lot!
A lot!
A lot!
...

So...
Write good programs, seriously!

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 47 / 50

Studio Group Problems

Let’s discuss them now.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 48 / 50

End

The End

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 49 / 50

Copyright

Niu Yunpeng © 2017 - 2018. Under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

Appropriate credits MUST be given when sharing, copying or redistributing
this material in any medium or format. No use for commercial purposes is
allowed.

This work is mostly an original by Niu Yunpeng . It may either directly or
indirectly benefit from the previous work of Martin Henz, Cai Deshun. For
illustration purposes, some pictures in the public domain are used. Upon
request, detailed acknowledgments will be provided.

Niu Yunpeng CS1101S Studio Week 2 August 21, 2018 50 / 50

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://yunpengn.github.io/

	Computation
	What is computation
	Computation & programming language

	The Source language
	Why Source?
	Components of a programming language
	Source language details

	Abstraction
	Black-box abstraction

	To write good programs

