
Welcome

CS1101S Studio Session Week 3:
Abstraction, Recursion & Order of Growth

Niu Yunpeng

niuyunpeng@u.nus.edu

August 28, 2018

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 1 / 127

Before We Start

Studio name
Hopeless group
A+ Participation
Recycle_Bin
CloudRiders
Computeers
...

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 2 / 127

Before We Start

How is everything so far?
Lectures
Piazza
Source Academy (mission + quest + path)
Studios
...

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 3 / 127

Before We Start

How is everything so far?
Lectures
Piazza
Source Academy (mission + quest + path)
Studios
...

And ...
Have you told really funny jokes?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 4 / 127

Overview

1 Review, abstraction & functions
From last week
A good abstraction
Function execution

2 Recursion
To understand recursion
To use recursion
Examples
Exercises

3 Order of growth
To understand order of growth
To use order of growth
Exercises

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 5 / 127

Review

Components of a programming language
Primitives:
The smallest constituent unit of a programming language.
Combination:
Ways to put primitives together.
Abstraction:
The method to simplify the messy combinations.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 6 / 127

Review

Means of abstraction
To abstract data: use naming;
To abstract procedures: use functions.
Usually, naming and functions are combined together.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 7 / 127

Review

Define a function

const pi = 3.1415926535;

function square (x) {
return x * x;

}

function circle (x) {
return pi * square (x);

}

Apply a function
The area of a circle with a radius of 3: circle(3);

The area of a circle with a radius of 5.6: circle(5.6);

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 8 / 127

Good Abstraction

What makes a good abstraction?
Modularity
Readability
Reusability
Maintainability

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 9 / 127

Good Abstraction

What makes a good abstraction?
Modularity:
Separate multiple steps (and sub-steps).
Readability:
Easy for others to read and understand.
Reusability:
Provide a generic interface to be used commonly.
Maintainability:
Convenient to debug, refactor and deploy.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 10 / 127

Function Execution

Basic terminologies about function
In general, there are two steps to use a function:

Funtion definition (or declaration)
Function application (or calling)

A function definition consists of
Funtion name
Formal parameter list
Function body

A function application consists of
Funtion name
Actual argument list

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 11 / 127

Function Execution

Example

function add(x, y) {
return x + y;

}

add (1, 2);

Explanation
add is the function name
x and y are formal parameters
1 and 2 are actual arguments

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 12 / 127

Function Execution

Order of reduction
To determine when the value of operands will be evaluated:

Applicative order reduction
Evaluate the operands whenever being applied to an operator
Evaluate the arguments and then apply

Normal order reduction
Evaluate the operands only if their values are needed
Fully expand and then reduce
Follow Principle of Last Commitment

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 13 / 127

Function Execution

Order of reduction (continued ...)
Source & JavaScript implements applicative order reduction
The two ways of reduction are equivalent as long as substitution
model does not break.

Unfortunately, substitution model will breaker later in the semester.
Eventually, environment model will come up on stage.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 14 / 127

Function Execution

Substitution model - what happens when a function is called?
Evaluate each actual argument from left to right
Bind the value of each actual argument to the corresponding formal
parameter
Execute each statement in the function body in a top-down manner
Go back to the caller when meeting return statement

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 15 / 127

Overview

1 Review, abstraction & functions
From last week
A good abstraction
Function execution

2 Recursion
To understand recursion
To use recursion
Examples
Exercises

3 Order of growth
To understand order of growth
To use order of growth
Exercises

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 16 / 127

Recursion

Recursion & iteration
When we need to solve a very large problem, in general, we will have two
approaches:

Bottom-up approach
Top-down approach

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 17 / 127

Recursion

Recursion & iteration
Iteration: the buttom-up approach;
Recursion: the top-down approach.

Notice
We will start with and mainly focus on recursion

The top-down approach.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 18 / 127

Recursion

Recursion is beautiful

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 19 / 127

Recursion

Recursion is beautiful

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 20 / 127

Recursion

Recursion is beautiful

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 21 / 127

Recursion

How to understand recursion?
Use substitution model .
“Substitution” means two “replace”:

Replace a function call by its function body;
Replace formal parameters by actual arguments.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 22 / 127

Recursion

Recursive function
Any function that calls itself (directly or indirectly) is called a
recursive function.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 23 / 127

Recursion

To write recursive functions correctly
Base case(s)
Scale
Sub-problem(s)

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 24 / 127

Recursion

To write recursive functions correctly
Base case(s):
the largest small problems that can be solved without recursion;
Scale:
the measurement of the size of the problem;
Sub-problem(s):
the relationship between one larger problem and all of its smaller
sub-problems.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 25 / 127

Recursion

Example of a recursive function

function stackn (n, pic) {
return n === 1 ? pic

: sf(1 / n, pic , stackn (n - 1, pic));
}

To write this recursive function correctly
Base case(s):
Scale:
Sub-problem(s):

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 26 / 127

Recursion

Example of a recursive function

function stackn (n, pic) {
return n === 1 ? pic

: sf(1 / n, pic , stackn (n - 1, pic));
}

To write this recursive function correctly
Base case(s): n = 1;
Scale: n;
Sub-problem(s): Divide the area into n pieces, where the current level
takes the top one piece, the rest takes n − 1 pieces.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 27 / 127

Recursion

Another example

// Calculates the factorial of a non - negative integer n.
// Pre - condition : The input of n is a non - negative integer .
function fact(n) {

// By definition , the factorial of 0 is 1.
return n === 0 ? 1 : fact(n - 1) * n;

}

To write this recursive function correctly
Base case(s):
Scale:
Sub-problem(s):

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 28 / 127

Recursion

Another example

// Calculates the factorial of a non - negative integer n.
// Pre - condition : The input of n is a non - negative integer .
function fact(n) {

// By definition , the factorial of 0 is 1.
return n === 0 ? 1 : fact(n - 1) * n;

}

To write this recursive function correctly
Base case(s): n = 0;
Scale: n;
Sub-problem(s): The factorial of n is the product of the fatorial of
n − 1 and itself.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 29 / 127

Recursion

How to understand
Use substitution model!

Interpretation

fact (5) = fact (4) * 5
= fact (3) * 4 * 5
= fact (2) * 3 * 4 * 5
= fact (1) * 2 * 3 * 4 * 5
= fact (0) * 1 * 2 * 3 * 4 * 5
= 1 * 1 * 2 * 3 * 4 * 5
= 1 * 2 * 3 * 4 * 5
= 2 * 3 * 4 * 5
= 6 * 4 * 5
= 24 * 5
= 120

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 30 / 127

Recursion

Deferred operation
The operations that have to be suspended because they need to wait
for some other operations to finish first.
In order to suspend them, we need to remember them in the memory,
which is a waste of space.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 31 / 127

Recursion

Why do they occur?
For recursive functions, if the execution of the recursive function call
is not the only and last step, all of the other steps have to wait for it,
then they will become deferred operations.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 32 / 127

Recursion

Recursive & iterative process
Execution of a recursive function may give rise to either:

Recursive process: those with deferred operations.
Iterative process: those without deferred operations.

Task today
Turn every recursive process into an iterative one!

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 33 / 127

Recursion

To turn a recursive process into an iterative one
Use a variable to remember the operation that we have to wait for;
Add a function parameter so that we can keep track of that variable;
Wrap with an outer function so that the interface does not change
(the user does not see any additional parameter).

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 34 / 127

Recursion

Classical examples of recursion
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change
Permutation / combination
...

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 35 / 127

Recursion

Examples that we are going to cover today...
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 36 / 127

Recursion

Factorial
In mathematics, the factorial of a non-negative integer n, denoted by
n!, is the product of all positive integers less than or equal to n.
According to the definition of empty product, the factorial of 0 is 1.
Symbolically, we have

n! =
n∏

k=1
k,∀n ≥ 0 and 0! = 1

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 37 / 127

Recursion

Factorial 1

// This version gives rise to a recursive process .
function fact(n) {

// By definition , the factorial of 0 is 1.
return n === 0 ? 1 : fact(n - 1) * n;

}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 38 / 127

Recursion

Factorial 2

// This version gives rise to an iterative process .
function fact(n) {

function iter(x, result) {
return x === 0 ? result : iter(x - 1, result * x);

}

return iter(n, 1);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 39 / 127

Recursion

Factorial 3

// This version gives rise to an iterative process .
function fact(n) {

function iter(x, result) {
return x === n ? result * x

: iter(x + 1, result * x);
}

return n === 0 ? 1 : iter (1, 1);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 40 / 127

Recursion

Factorial 4

// This version gives rise to an iterative process .
function fact(n) {

function iter(x, result) {
return x > n ? result : iter(x + 1, result * x);

}

return iter (1, 1);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 41 / 127

Recursion

Square root - Newton’s method
In order to find an approximation of √x ,

Make a guess of y;
Calculate the average of y and x/y ;
Keep improving the guess until it is good enough.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 42 / 127

Recursion

Hint
How to make the initial guess?
How to improve the guess?
What is “good enough”?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 43 / 127

Recursion

Hint
The initial guess: 1;
To improve the guess: calculate the average of y and x/y ;
“Good enough”: set a threshold value, like 1

10000 .

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 44 / 127

Recursion

Square root

// Calculates the square root of an integer .
function sqrt(x) {

function iter(guess) {
var improved = (guess + x / guess) / 2;
var diff = math_abs (improved - guess);

return diff < 1 / 10000 ? guess : iter(improved);
}

return iter (1);
}

Think about it...
Correctness?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 45 / 127

Recursion

Power function - exponentiation
Exponentiation is a mathematical operation, written as bn, involving
two numbers, the base b and the exponent n.
Here, at first, we only consider the case that the exponent is a natural
number and the base is a real number.
Symbolically, we have

bn = b × · · · × b︸ ︷︷ ︸
n

, ∀b ∈ R and ∀n ∈ N

Notice that 00 is not defined mathematically.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 46 / 127

Recursion

Power function 1

// This version gives rise to a recursive process .
function power(b, n) {

return n === 0 ? 1 : b * power(b, n - 1);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 47 / 127

Recursion

Power function 2

// This version gives rise to an iterative process .
function power(b, n) {

function iter(k, result) {
return k === 0 ? result : iter(k - 1, result * b);

}

return iter(n, 1);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 48 / 127

Recursion

Power function 3

// This version also gives rise to an iterative process .
function power(b, n) {

function iter(k, result) {
return k === n ? result : iter(k + 1, result * b);

}

return iter (0, 1);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 49 / 127

Recursion

Fast power 1

// This version gives rise to a recursive process .
function fast_power (b, n) {

return n === 0 ? 1
: (n % 2 === 0 ? fast_power (b * b, n / 2)

: b * fast_power (b, n - 1));
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 50 / 127

Recursion

(Not really) fast power 2

// This version gives rise to an iterative process .
function fast_power (b, n) {

function iter(k, res) {
return k === 0 ? res

: (k % 2 === 0 ? iter(k / 2, res * res)
: iter(k - 1, res * b));

}
return iter(n, 1);

}

Think about it...
What’s wrong with it? Speed or correctness or ...?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 51 / 127

Recursion

(Not really) fast power 3

// This version gives rise to an iterative process .
function fast_power (b, n) {

function iter(k, res) {
return k === 0 ? res

: (k % 2 === 0 ? iter(k / 2, res * res)
: iter(k - 1, res * b));

}
return iter(n, b);

}

Think about it...
What’s wrong with it? Speed or correctness or ...?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 52 / 127

Recursion

Fast power 4

// This version also gives rise to an iterative process .
function fast_power (b, n) {

function iter(b, k, res) {
return k === 0 ? res

: (k % 2 === 0 ? iter(b * b, k / 2, res)
: iter(b, k - 1, res * b));

}
return iter(b, n, 1);

}

Think about it...
Time/space complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 53 / 127

Recursion

Why is “fast_power” fast?
In normal power function, we iterate through 1...n. Thus, we have to
result in a linear order of growth.
In fast power function, we make use of the relationship bn = (b2)n/2.
Thus, we can skip some of 1...n and achieve a logarithmic order of
growth.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 54 / 127

Recursion

To implement the “skip” in “fast_power”
Binary search approach: use the sequence n, n

2 , n
4 , ..., 2, 1.

What about the other direction?
Aggressive cow approach: use the sequence 1, 2, ..., n

4 , n
2 , n.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 55 / 127

Recursion

(Not so) fast power 1

// This version gives rise to a recursive process .
function not_so_fast_power (b, n) {

function part_iter (unit , k) {
if (k === n) {

return unit;
} else {

return k * 2 <= n ? part_iter (unit * unit , k * 2)
: b * part_iter (unit , k + 1);

}
}
return part_iter (b, 1);

}

Think about it...
Problem?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 56 / 127

Recursion

(Not so) fast power 2

// This version gives rise to an iterative process .
function not_so_fast_power (b, n) {

function iter(unit , k, res) {
if (k === n) {

return unit * res;
} else {

return k * 2 <= n ? iter(unit * unit , k * 2, res)
: iter(unit , k + 1, res * b);

}
}
return iter(b, 1, 1);

}

Think about it...
Time/space complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 57 / 127

Recursion

Fibonacci
In mathematics, the Fibonacci numbers are the numbers in the
following integer sequence, called the Fibonacci sequence, and
characterized by the fact that every number after the first two is the
sum of the two preceding ones:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

It is a modern convention that the Fibonacci sequence starts from 0
(rather than 1). So do not be confused by some external resources.
Symbolically, we have

fibo(n) =
{
n, for n ≤ 1
fibo(n − 1) + fibo(n − 2), for n ≥ 2

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 58 / 127

Recursion

Fibonacci 1

// This version gives rise to a recursive process .
function fibo(n) {

return n <= 1 ? n : fibo(n - 1) + fibo(n - 2);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 59 / 127

Recursion

Fibonacci 2

// This version gives rise to an iterative process .
function fibo(n) {

function iter(x, last1 , last2) {
return x > n ? last1

: iter(x + 1, last1 + last2 , last1);
}

return n <= 1 ? n : iter (2, 1, 0);
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 60 / 127

Recursion

Fibonacci 3

// You will learn this formula in later chapters of CS1231 .
function fibo(n) {

var sqrt5 = Math.sqrt (5);
var ratio = (sqrt5 + 1) / 2;
var term = Math.pow(ratio , n) - Math.pow(ratio , -n);

return term / sqrt5;
}

Think about it...
Correctness?
Time/space complexity?
Tradeoff? Is this meaningful?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 61 / 127

Recursion

Fibonacci 4
According to Linear Algebra, Fibonacci relationship is:[

f (n) f (n − 1)
f (n − 1) f (n − 2)

]
=

[
1 1
1 0

]n−1

Therefore, in order to find out the solution of Fibonacci sequence, we only
need to deal with the power of a matrix.

Caution
You need solid background knowledge in linear algebra to understand
this solution.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 62 / 127

Recursion

A few steps to consider
How to represent a matrix
How to implement matrix multiplication
How to compute the power of matrix

How to do these 3 steps
Let’s consider them one by one.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 63 / 127

Recursion

Step 1
How to represent a matrix

Answer
The normal way to represent a matrix is to use a 2nd dimensional
array. However, you will learn array in CS1101S later, not now.
Since the matrix for Fibonacci is only 2× 2, we can just simply use
four variables.
Like this: [

1 1
1 0

]
⇔

[
a b
c d

]

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 64 / 127

Recursion

Step 2
How to implement matrix multiplication

Hint
Matrix multiplication is defined mathematically like this:[

a b
c d

]
×

[
e f
g h

]
=

[
ae + bg af + bh
ce + dg cf + dh

]
We should follow this definition.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 65 / 127

Recursion

Step 3
How to compute the power of matrix

Hint
Last week, we said that “Combination should provide a generic
interface (a convention) so that we can (theoretically) combine
everything as long as the convention is not broken.”.
Therefore, as long as we can compute the power of a number, we can
compute the power of a matrix in a similar way.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 66 / 127

Recursion

The situation now
We know how to compute the power of a number just now.
What if we need to compute the power of a matrix?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 67 / 127

Recursion

Fibonacci 4

// This version uses the normal power method .
function fibo(n) {

function iter(k, a, b, c, d) {
if (k === n) {

return a;
} else {

return iter(k + 1, a + b, a, c + d, c);
}

}

return n <= 1 ? n : iter (2, 1, 1, 1, 0);
}

Think about it...
Correctness?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 68 / 127

Recursion

Fibonacci 5
According to Linear Algebra, Fibonacci relationship is:[

f (n) f (n − 1)
f (n − 1) f (n − 2)

]
=

[
1 1
1 0

]n−1

We know the fast method to compute the power of a number.
Your task today: How to adapt “fast_power” on matrix?
Time/space complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 69 / 127

Recursion

Greatest common divisor (GCD)
In mathematics, the greatest common divisor (GCD) of two or more
integers, which are not all zero, is the largest positive integer that
divides each of the integers.
Here, we only consider the case of GCD of two integers.
Symbolically, we have:

∀a, b ∈ Z, d = gcd(a, b)⇔
{
d | a ∩ d | b
∀c ∈ Z, c | a ∩ c | b ⇔ c ≤ d

Notice
GCD is also known as the greatest common factor (GCF), highest
common factor (HCF), greatest common measure (GCM), or highest
common divisor (HCD).

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 70 / 127

Recursion

GCD - the ancient Chinese algorithm
Described in the Chapter 1 of Nine Chapters on the Mathematical
Art. Also called “geng xiang jian sun shu”.
Based on the following relationship

gcd(a, b) = gcd(a − b, b), assuming that a > b

Self reading
The concept of primes and the algorithm for counting the greatest
common divisor in Ancient China. Shaohua Zhang. Click here to read.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 71 / 127

https://arxiv.org/pdf/0910.0095.pdf

Recursion

GCD 1

function gcd(a, b) {
if (a === b) {

return a;
} else {

return a > b ? gcd(a - b, b)
: gcd(a, b - a);

}
}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 72 / 127

Recursion

GCD - the Euclidean algorithm
Described in Book 7 and 10 of Euclid’s Elements, also discovered
indepedently in ancient China and India.
Based on the following relationship

gcd(a, b) = gcd(b, r), where r is the remainder of a/b

Significance
“[The Euclidean algorithm] is the granddaddy of all algorithms, because it
is the oldest non-trivial algorithm that has survived to the present day.”

Donald Knuth, The Art of Computer Programming, 2nd edition (1981),
Vol. 2: Seminumerical Algorithms, p. 318.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 73 / 127

Recursion

GCD 2

// Pre - condition : a > b.
function gcd(a, b) {

return b === 0 ? a
: gcd(b, a % b);

}

Think about it...
Correctness?
Time/space complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 74 / 127

Recursion

Which one is faster?

function gcd(a, b) {
if (a === b) {

return a;
} else {

return a > b ? gcd(a - b, b)
: gcd(a, b - a);

}
}

// Pre - condition : a > b.
function gcd2(a, b) {

return b === 0 ? a
: gcd(b, a % b);

}

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 75 / 127

Recursion

Hint - Which one is faster?
Compare the actual performance of the computer when doing division
and subtraction.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 76 / 127

Recursion

GCD - the Stein’s algorithm
First published by the Israeli physicist and programmer Josef Stein in
1967, also known as the binary GCD algorithm.
Based on the following relationship

gcd(k · a, k · b) = k · gcd(a, b)

Significance
The Stein’s algorithm fixes the vital fallback of the Euclidean
algorithm. It avoids the inefficiency of integer division and remainder.
Has significant use in cryptography.
According to Donald Knuth, however, it may have been known in 1st

century ancient China.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 77 / 127

Recursion

GCD 3

// Assume we do not know the relationship between a and b.
function gcd(a, b) {

if (a === 0 || b === 0 || a === b) {
return a;

} else if (a % 2 === 0 && b % 2 === 0) {
return 2 * gcd(a / 2, b / 2);

} else if (a % 2 === 0) {
return gcd(a / 2, b);

} else if (b % 2 === 0) {
return gcd(a, b / 2);

} else {
return gcd(Math.abs(a - b), Math.min(a, b));

}
}

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 78 / 127

Recursion

Is this really faster?
The Stein’s algorithm seems to combine GCD 1 and GCD 2.
It still uses division and remainder, why is it faster?

Patch to Stein’s algorithm
Look at the next version, GCD 4.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 79 / 127

Recursion

GCD 4

// Assume we do not know the relationship between a and b.
function gcd(a, b) {

if (a === 0 || b === 0 || a === b) {
return a;

} else if (a % 2 === 0 && b % 2 === 0) {
return gcd(a >> 1, b >> 1) << 1;

} else if (a % 2 === 0) {
return gcd(a >> 1, b);

} else if (b % 2 === 0) {
return gcd(a, b >> 1);

} else {
return gcd(Math.abs(a - b), Math.min(a, b));

}
}

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 80 / 127

Recursion

Reason
Bit operator (right-shift) achieves the same result as division by 2.
However, it is less expensive than division.

Due to native support in CPU instruction sets.

Caution
This is just a demonstration. It may not be true in modern CPUs.
You need CS2100/EE2024 knowledge to understand this.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 81 / 127

Recursion

More about GCD 4
Some older versions of Javascript may not support bit operator.
If you really want to have a try, go to your browser’s console.
Akhavi and Vallee proved that, in theory, binary GCD can be about
60% more efficient (in terms of the number of bit operations) on
average than the Euclidean algorithm.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 82 / 127

Recursion

Least common multiple (LCM)
In mathematics, the least common multiple (LCM) of two or more
integers, which are all not zero, is the smallest positive integer that is
divisible by each of the integers.
Here, we only consider the case of LCM of two integers.
Symbolically, we have:

∀a, b ∈ Z, d = lcm(a, b)⇔
{
a | d ∩ b | d
∀c ∈ Z, a | c ∩ b | c ⇔ c ≥ d

Notice
LCM is also known as the lowest common multiple (also LCM), or
smallest common multiple (SCM).

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 83 / 127

Recursion

LCM 1

// Assume we do not know the relationship between a and b.
function lcm(a, b) {

function iter(x, y) {
if (x === y) {

return x;
} else {

return x > y ? iter(x, y + b)
: iter(x + a, y);

}
}
return iter(a, b);

}

Think about it...
Correctness?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 84 / 127

Recursion

LCM 2

function lcm(a, b) {
return a * b / gcd(a, b);

}

To understand...
lcm(a, b) = |a·b|

gcd(a,b)

Think about it...
Time/sapce complexity?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 85 / 127

Recursion

Exercises of recursion
Digit sum
Multiple of 9
Palindrome
Super-fibonacci
Staircases

Your task today
Try to answer all of these problems.
Try to give both the recursive and iterative version.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 86 / 127

Recursion

1. Digit sum
Given a non-negative integer, find the sum of all its digits. Your function
name should be sum_of_digits.

Examples
sum_of_digits(0) returns 0.
sum_of_digits(12965) returns 23.
sum_of_digits(70263) returns 18.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 87 / 127

Recursion

2. Multiple of 9
A number is a multiple of 9 if and only if its sum_of_digits is a multiple
of 9. Using this fact, create a function to check whether a non-negative
number is a multiple of 9. Notice that you MUST NOT use % 9.Your
function name should be is_multiple_of_9.

Examples
is_multiple_of_9(0) returns true.
is_multiple_of_9(12965) returns false.
is_multiple_of_9(70263) returns true.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 88 / 127

Recursion

3. Palindrome 1
Given a non-negative integer, when the order of all its digits is reversed,
we get its palindrome. Create a function to find the palindrome. Your
function name should be palindrome.
Notice: the return value of your function must be integer (rather than
string), you are also not allowed to use explicit data type conversion.

Examples
palindrome(0) returns 0.
palindrome(15687) returns 78651.
palindrome(32523) returns 32523.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 89 / 127

Recursion

4. Palindrome 2
Given a non-negative integer, it is palindromic if its palindrome and itself
is equal. Create a function to check whether a number is palindromic.
Your function name should be is_palindromic.

Examples
is_palindromic(0) returns true.
is_palindromic(15687) returns false.
is_palindromic(32523) returns true.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 90 / 127

Recursion

5. Super-fibonacci
Given the following recurrence relationship,

f (n) =
{
2 · n + 1, for n ≤ 2
3 · f (n − 1) + 2 · f (n − 2) + f (n − 3), for n > 3

create a function to find the nth term. Your function name should be
calculate_f.

Examples
calculate_f(0) returns 1.
calculate_f(1) returns 3.
calculate_f(3) returns 22.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 91 / 127

Recursion

6. Staircase
We can use blocks to create a staircase. However, not every combination
of blocks can become a staircase. To build a staircase, the height of each
column should be strictly descending (from left to right).
Following are some examples of valid staircases:

Following are some examples of invalid staircases:

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 92 / 127

Recursion

6. Staircase
Create a function to count the number of possible valid staircases using a
given number of blocks. Notice that all of the blocks have to be used.
You can assume the input is positive. Your function name should be
staircase.

Examples
staircase(1) returns 1.
staircase(2) returns 1.
staircase(3) returns 2.
staircase(4) returns 2.
staircase(5) returns 3.
staircase(6) returns 4.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 93 / 127

Overview

1 Review, abstraction & functions
From last week
A good abstraction
Function execution

2 Recursion
To understand recursion
To use recursion
Examples
Exercises

3 Order of growth
To understand order of growth
To use order of growth
Exercises

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 94 / 127

Order of Growth

What is order of growth?
Purpose: we are trying to find a rough measure of the resources (time
and/or space) used by a computational process (a program).
Approach: Use a mathematical function to describe how the amount
of resources consumed grows along with the scale of the problem.
Abstraction: We do not need a precise (but complex) expression of
that function. Instead, we want a simple (but useful) expression to
describe its limiting behavior.
In other words, we want to find an approximation of that function.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 95 / 127

Order of Growth

Big theta, oh, omega
Big theta Θ: tight bound (both sides);
Big oh O: upper bound;
Big omega Ω: lower bound.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 96 / 127

Order of Growth

Formal definition
The function r has an order of growth Θ(g(n)) if there exists positive
constants k1 and k2 and a number n0 such that

0 ≤ k1 · g(n) ≤ r(n) ≤ k2 · g(n), ∀n > n0

The function r has an order of growth O(g(n)) if there exists a
positive constant k and a number n0 such that

0 ≤ r(n) ≤ k · g(n), ∀n > n0

The function r has an order of growth Ω(g(n)) if there exists a
positive constant k and a number n0 such that

0 ≤ k · g(n) ≤ r(n), ∀n > n0

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 97 / 127

Order of Growth

Small oh, omega (optional ...)
Small oh o: non-tight upper bound;
Small omega ω: non-tight lower bound.

Caution
Please ignore o and ω if they make you confused.

Additional materials, non-examinable.
For more, see CLRS 3rd edition, page 50 - 51.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 98 / 127

Order of Growth

More formal definition (optional ...)
The function r has an order of growth o(g(n)) if for any positive
constant k, there exists a number n0 such that

0 ≤ r(n) < k · g(n), ∀n > n0

The function r has an order of growth ω(g(n)) if for any positive
constant k, there exists a number n0 such that

0 ≤ k · g(n) < r(n), ∀n > n0

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 99 / 127

Order of Growth

How to find order of growth
You only need to follow two steps:

Analyse the recurrence relationship.
Calculate the asymptotic notation of that relationship.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 100 / 127

Order of Growth

Order of growth in CS1101S...
For the interest of examination-oriented or grade-oriented, you need
enough exercises on such questions.

How to tackle this kind of problems easily
Remember a few commonly-used asymptotic notation:

1, log n, n, n · log n, nk , 2n, ...

For polynomials, only consider the term with the highest order (ignore
minor terms).
Always neglect constants and set the coefficient as 1.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 101 / 127

Order of Growth

Exercises
In the following slides, you are going to see a few programs.
Use whatever method you have learnt (or guess), find out their order
of growth in time and space.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 102 / 127

Order of Growth

Exercise 1

function a(n) {
if (n < 0) {

return 0;
} else {

return a(n - 1);
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 103 / 127

Order of Growth

Exercise 2

function b(n) {
if (n < 0) {

return 0;
} else {

return b(n - 1) + 2;
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 104 / 127

Order of Growth

Exercise 3

function c(n) {
if (n < 1) {

return 0;
} else {

return c(n / 2);
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 105 / 127

Order of Growth

Exercise 4

function d(n) {
if (n < 0) {

return 0;
} else {

return d(n / 3);
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 106 / 127

Order of Growth

Exercise 5

function e(n) {
var k = n / 3;

function iter(n) {
return n < 0 ? 0 : iter(n - k);

}

return iter(n);
}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 107 / 127

Order of Growth

Exercise 6

function f(n) {
if(n < 0) {

return 0;
} else {

return f(n - 1) + f(n - 1);
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 108 / 127

Order of Growth

Exercise 7

function g(n) {
if(n < 0) {

return 0;
} else {

return g(n - 1) * 2;
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 109 / 127

Order of Growth

Exercise 8

function h(n) {
if(n < 0) {

return 0;
} else {

return h(n / 2) + h(n / 2);
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 110 / 127

Order of Growth

Exercise 9

function i(n) {
if(n < 0) {

return 0;
} else {

return i(n / 2) * 2;
}

}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 111 / 127

Order of Growth

Exercise 10

function j(n) {
var k = Math.sqrt(n);

function iter(n) {
return n < 0 ? 0 : iter(n - k);

}

return iter(n);
}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 112 / 127

Order of Growth

Exercise 11

function k(n) {
var k = Math.log(n);

function iter(n) {
return n < 0 ? 0 : iter(n - k);

}

return iter(n);
}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 113 / 127

Order of Growth

Exercise 12

function l(n) {
function fibo(x) {

return x < 2 ? x : fibo(x - 1) + fibo(x - 2);
}

return n === 0 ? 0 : fibo(n) + l(n - 1);
}

Think about it...
Order of growth in time/space

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 114 / 127

Order of Growth

Recap - Two steps to find order of growth
You only need to follow two steps:

Analyse the recurrence relationship.
Calculate the asymptotic notation of that relationship.

But...
How to execute these two steps?

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 115 / 127

Order of Growth

When the question is simple...
Have you seen the question before?

Usually, it is similar to one of Exercise 1 - 12.
If not, can you “guess” the answer?

Most questions in CS1101S are considered to be “simple”.

When the question is too complicated...
Use the formal approach described as follows.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 116 / 127

Order of Growth

Step 1 - analyse the recurrence relationship
This is an easy but crucial step.
“Easy”: because this relationship is the same as the relationship of
sub-problems when you write the recursion.
Therefore, you do not need to do any extra work here.
“Crucial”: if you cannot find the relationship here, that means you
also cannot find the relationship of sub-problems in recursion.
That means, you have to leave the whole question blank in an exam.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 117 / 127

Order of Growth

Step 2 - calculate the asymptotic notation
This step is only about some mathematical tricks.
In fact, no CS knowledge involved.

Two mathematical tricks
Recurrence tree: use a tree diagram to help you analyse;
Master theorem: a useful theorem to help determine the asymptotic
notation.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 118 / 127

Order of Growth

Recurrence tree
Idea: visualize the recurrence relationship by drawing a tree diagram.

Expand the tree big enough;
Find the sum on each level ;
Find the number of levels.

A few mathematical series
1 + 2 + · · ·+ n = O(n2)
a + a · q + · · ·+ a · qn = a · 1−qn

1−q
= a

1−q = O(1) or O(a), when |q| < 1
1 + 1

2 + · · ·+ 1
n = O(log n)

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 119 / 127

Order of Growth

Master Theorem
Idea: an empirical theorem which summarizes 3 common scenarios of
recurrence relationship and their order of growth.

Content
If the recurrence relationship can be expressed as T (n) = a · T (n

b) + f (n),
let x = nlogb a, then:

If x > f (n), then T (n) = O(nlogb a);
If x = f (n), then T (n) = O(f (n) · log n);
If x < f (n) and a · f (n

b) < f (n), then T (n) = O(f (n));

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 120 / 127

Order of Growth

Master Theorem (continued ..)
Master Theorem may fail in a few scenarios, such as

The function f (n) oscillates, such as sin(n) and cos(n)
The derivative of f (n) is smaller than any polynomial, such as log(n)
...

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 121 / 127

Order of Growth

Self reading
MIT has an interesting course on order of growth by Prof. Erik
Demaine.

6.890 Algorithmic Lower Bounds: Fun with Hardness Proofs

Resources
Fall 2014 version on MIT OCW

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 122 / 127

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-890-algorithmic-lower-bounds-fun-with-hardness-proofs-fall-2014/

Order of Growth

Exercise
In the next page, you are going to see a few pairs of f (n) and g(n), find
out their relationship from one of the following three:

f (n) ∈ O(g(n))
f (n) ∈ Θ(g(n))
f (n) ∈ Ω(g(n))

Please use Θ when possible.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 123 / 127

Order of Growth

Exercise (continued ...)
f (n) = 0 and g(n) = 1
f (n) = 2n and g(n) = 2n+1

f (n) = 2n and g(n) = 22n

f (n) = log(n!) and g(n) = n · logn

f (n) = n
1

logn and g(n) = 2logn
f (n) = nk+1 and g(n) = ∑n

i=1 ik , where k is a constant

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 124 / 127

Studio Group Problems

Let’s discuss them now.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 125 / 127

End

The End

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 126 / 127

Copyright

Niu Yunpeng © 2017 - 2018. Under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

Appropriate credits MUST be given when sharing, copying or redistributing
this material in any medium or format. No use for commercial purposes is
allowed.

This work is mostly an original by Niu Yunpeng . It may either directly or
indirectly benefit from the previous work of Martin Henz, Cai Deshun. For
illustration purposes, some pictures in the public domain are used. Upon
request, detailed acknowledgments will be provided.

Niu Yunpeng CS1101S Studio Week 3 August 28, 2018 127 / 127

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://yunpengn.github.io/

	Review, abstraction & functions
	From last week
	A good abstraction
	Function execution

	Recursion
	To understand recursion
	To use recursion
	Examples
	Exercises

	Order of growth
	To understand order of growth
	To use order of growth
	Exercises

