
Welcome

CS1101S Studio Session Week 4:
Higher-order Programming & Language Processing

Niu Yunpeng

niuyunpeng@u.nus.edu

September 4, 2018

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 1 / 82

Before We Start

Reading Assessment 1
Coming soon in Week 4
Focus on many topics until Week 3

Basic programming
Substitution model
Recursion & iteration
Scoping
...

Good luck!
Try to get full marks.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 2 / 82

Before We Start

if-else block
Introduced in Week 3 lecture
A very important building block in larger programs
Many sections in Week 3 studio slides should be readable to you now
...

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 3 / 82

Overview

1 More about recursion
From last week
Wishful thinking
Examples

2 Higher-order programming
Before we start
To understand higher-order programming
To use higher-order programming
Exercises

3 Language processing
Family of programming languages
From low-level to high-level
Compilation & interpretation

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 4 / 82

Review

A few terms so far
Primitives/combination/abstraction
Recursive/iterative function
Recursive/iterative process

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 5 / 82

Review

Two approaches
We have two general approaches to solve a really large problem:

Bottom-up approach: begin with all the smallest units of this problem
and combine them together.
Top-down approach: repeatedly divide a larger problem into several
smaller problems and “wish” these sub-problems could be solved.

Two programming styles
Iteration: the bottom-up approach;
Recursion: the top-down approach.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 6 / 82

Review

To understand recursion
Use substitution model (applicative order reduction).

Substitution model
To use substitution model on understanding a function:

Evaluate all actual arguments;
Replace all formal parameters with their actual arguments;
Apply each statement in the function body (and get the return value);
Repeat the first 3 steps until done.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 7 / 82

Wishful Thinking

What is wishful thinking?
Explained in the textbook, Structure and Interpretation of Computer
Programs (click here to read).

Interpretation
Why the recursive calls could solve the sub-problems?
Because I “wish” those sub-problems could be solved.
Thus, I just need to consider how to combine them together.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 8 / 82

http://www.comp.nus.edu.sg/~cs1101s/sicp/

Wishful Thinking

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 9 / 82

More Recursion

Classical examples of recursion
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change
Permutation / combination
...

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 10 / 82

More Recursion

Examples in Week 3 slides
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 11 / 82

More Recursion

Examples in Week 4 slides
Hanoi tower
Coin change

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 12 / 82

More Recursion

Hanoi tower
Given: a tower consisting of disks in increasing size;
Goal: move all disks from A to B with the help of C;
Constraint: never put a larger disk on top of a smaller one.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 13 / 82

More Recursion

Recursion for Hanoi tower
Base case: move 2 disks from A to B with the help of C.
Scale: n disks.
Sub-problem: how to solve the problems of n − 1 disks.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 14 / 82

More Recursion

Hanoi tower

function hanoi(size , from , to , extra) {
if (size === 0) {

;
} else {

hanoi(size - 1, from , extra , to);
move_disk (from , to);
hanoi(size - 1, extra , to , from);

}
}

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 15 / 82

More Recursion

An interesting concern
What is the move_disk function?
Where is it defined?
Why do we need it?

Answer
It does not matter. It is simply an abstraction.
It is just a way to tell you that, the top disk will be moved from
somewhere to elsewhere.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 16 / 82

More Recursion

Coin change
Given: a set of unlimited coins (however limited number of kinds);
Given also: a specific amount of money in cents;
Goal: find the number of ways to change this amount into coins.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 17 / 82

More Recursion

Recursion for coin change
Base case: the amount of money left is 0, which means a valid way to
make the changes.
Scale: the amount of money left in cents.
Sub-problem: to use the same kind or a new kind.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 18 / 82

More Recursion

Recursion for coin change
Base case: the amount of money left is 0, which means a valid way to
make the changes.
Scale: the amount of money left in cents.
Sub-problem: to use the same kind or a new kind.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 19 / 82

More Recursion

Coin change

function coin_change (amount , kind) {
if (amount === 0) {

return 1;
} else if (amount < 0 || kind === 0) {

return 0;
} else {

return coin_change (amount , kind - 1) +
coin_change (amount - value(kind), kind);

}
}

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 20 / 82

More Recursion

Coin change

function value(kind) {
return kind === 1 ? 5 :

kind === 2 ? 10 :
kind === 3 ? 20 :
kind === 4 ? 50 :
kind === 5 ? 100 :
0;

}

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 21 / 82

More Recursion

What is coin change really about?
It is to count the number of ways we can solve a problem.
In fact, it is to count the number of leaves in a decision tree.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 22 / 82

More Recursion

What is coin change really about?
It is to count the number of ways we can solve a problem.
In fact, it is to count the number of leaves in a decision tree.

What?
Unbelievable! We are learning part of the simplest form of machine
learning (ML) or artificial intelligence (AI).

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 23 / 82

More Recursion

AlphaGo vs Lee Sedol two year ago

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 24 / 82

More Recursion

Recommended modules at SoC
CS3243(R) Introduction to Artificial Intelligence
CS3244 Machine Learning
CS4246 AI Planning and Decision Making
CS5339 Theory and Algorithms for Machine Learning
CS5340 Uncertainty Modelling in AI

Caution
Hard modules;
Need strong mathematical foundations.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 25 / 82

More Recursion

Examples we have learn so far...
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change

One thing left...
Permutation / combination

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 26 / 82

Overview

1 More about recursion
From last week
Wishful thinking
Examples

2 Higher-order programming
Before we start
To understand higher-order programming
To use higher-order programming
Exercises

3 Language processing
Family of programming languages
From low-level to high-level
Compilation & interpretation

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 27 / 82

Higher-order Programming

Before we start...
We need to mention a few things before we start:

How to check the correctness of a program;
Revisit of variable scoping;
Why we can do higher-order programming in JavaScript?

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 28 / 82

Higher-order Programming

How to check the correctness of a program
Invariant
Termination

Base case(s)
Finite time/space complexity

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 29 / 82

Higher-order Programming

Order of growth exercise from last week

function d(n) {
if (n < 0) {

return 0;
} else {

return d(n / 3);
}

}

d(10);

Question
Will it terminate?

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 30 / 82

Higher-order Programming

Revisit of variable scoping
Pre-defined functions or constants are visible everywhere.
A function or constant is visible within the closest surrounding curly
braces where it is declared. Or it will be visible in the whole program
if none (top-level constants, global constants).
Formal parameters are visible within the function body to which it
belongs.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 31 / 82

Higher-order Programming

Core built-in functions
alert

display

error

prompt

parse_int

runtime

A few keywords
undefined

Infinity

-Infinity

NaN

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 32 / 82

Higher-order Programming

Mathematical library - functions
math_abs(x)

math_sin(x) math_cos(x) math_tan(x)

math_asin(x) math_acos(x) math_atan(x) math_atan2(y, x)

math_floor(x) math_ceil(x) math_round(x)

math_max(a, b, ...) math_min(a, b, c, ...)

math_pow(x, y) math_exp(x)

math_sqrt(x)

math_log(x) math_log10(x) math_log2(x)

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 33 / 82

Higher-order Programming

Mathematical library - constants
math_E

math_PI

math_SQRT2

math_SQRT1_2

math_LN10

math_LN2

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 34 / 82

Higher-order Programming

Exercises for variable scoping
Find out the output of each program, and
Explain the reason.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 35 / 82

Higher-order Programming

Exercise 1

const x = 5;

function f(x) {
return x;

}

f(3);

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 36 / 82

Higher-order Programming

Exercise 2

const x = 5;

function f(x) {
function g() {

return x;
}

return g();
}

f(x);

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 37 / 82

Higher-order Programming

Things...
Constants can be functions.
Parameters can be functions.
Return values can be functions.

Result...
That’s all about higher-order programming.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 38 / 82

Higher-order Programming

Arrow function
A more concise way to declare functions
Especially useful for those one-line functions

Example

const circle_area = radius => math_PI * radius * radius ;
circle_area (3);

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 39 / 82

Higher-order Programming

Original version

function fact(n) {
// By definition , the factorial of 0 is 1.
return n === 0 ? 1 : fact(n - 1) * n;

}

Notice
This version gives rise to a recursive process.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 40 / 82

Higher-order Programming

Abstract the multiplication

function make_multiplier (x) {
return num => num * x;

}

const multiply_by_4 = make_multiplier (4);
multiply_by_4 (5);

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 41 / 82

Higher-order Programming

Using the abstraction of multiplication

function fact(n) {
if (n === 0) {

return 1;
} else {

return (make_multiplier (n))(fact(n - 1));
}

}

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 42 / 82

Higher-order Programming

Abstract the sub-problem relationship

function product (value , next , upper , lower) {
if (upper <= lower) {

return 1;
} else {

return value(upper) *
product (value , next , next(upper), lower);

}
}

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 43 / 82

Higher-order Programming

Abstract the relationship again

function product (value , next , terminate , now) {
if (terminate (now)) {

return 1;
} else {

return value(now) *
product (value , next , terminate , next(now));

}
}

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 44 / 82

Higher-order Programming

Think about it carefully...
Three key aspects for a recursive function:

Base case(s)
Scale
Sub-problem(s)

Three functions as parameters for product:
terminate

value

next

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 45 / 82

Higher-order Programming

Using the abstraction for sub-problem relationship

function fact(n) {
return product (x => x,

x => x - 1,
x => x <= 0,
n);

}

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 46 / 82

Higher-order Programming

What about this?
1 + 2 + · · · + n
1 × 2 × · · · × n
For these two different series, what is in common?

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 47 / 82

Higher-order Programming

Abstract the multiplication and sub-problem relationship

function accum(value , next , terminate , operation , now) {
if (terminate (now)) {

return 1;
} else {

return operation (value(now),
accum(value , next , terminate ,

operation , next(now)));
}

}

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 48 / 82

Higher-order Programming

Once again

function accum(value , next , terminate , oper , base , now) {
if (terminate (now)) {

return base ();
} else {

return oper(value(now),
accum(value , next , terminate , oper ,

base , next(now)));
}

}

Think about it...
What changes?

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 49 / 82

Higher-order Programming

Using everything together

function fact(n) {
return accum(x => x,

x => x - 1,
x => x <= 0,
(x, y) => x * y,
() => 1,
n);

}

Think about it...
What changes?

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 50 / 82

Higher-order Programming

Your task today...
Does this function gives rise to a recursive or iterative process?
If it gives rise to a recursive process, can you change it into an
iterative process?

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 51 / 82

Higher-order Programming

Notice
In the following slides, you are going to see a few problems.
They are selected from past year papers.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 52 / 82

Higher-order Programming

Exercise 1
See the function strict below. Consider a restricted version of Source, in
which each function is only allowed to have at most 1 parameter.
Find out how to achieve the same result as strict under this constraint.
function strict (a, b, c) {

return a * b + c;
}

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 53 / 82

Higher-order Programming

Exercise 2

function plus_one (x) {
return x + 1;

}

function trans(func) {
return x => 2 * func(x * 2);

}

function twice(func) {
return x => func(func(x));

}

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 54 / 82

Higher-order Programming

Exercise 2
Given the three functions in the last page, try to find out the output of the
following programs:

((twice(trans))(plus_one))(1);

((twice(trans(plus_one))))(1);

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 55 / 82

Higher-order Programming

Exercise 3
According to the substitution model of execution, a process can be
said to exhaust all time resources if it keeps evaluating and never
reaches any result value.
Also, a process can be said to exhaust all space resources if it keeps
growing while it evaluates sub-expressions, i.e. the number of sub-
expressions and deferred operations will keep growing.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 56 / 82

Higher-order Programming

Exercise 3
For the following programs, find out whether they will exhause time or
space resources (or both):

1) Will it exhaust time/space resources or both?
function loop(x) {

return loop(x);
}
loop (0);

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 57 / 82

Higher-order Programming

Exercise 3
For the following programs, find out whether they will exhause time or
space resources (or both):

2) Will it exhaust time/space resources or both?
function loop2(x) {

return loop2(loop2(x));
}
loop2 (0);

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 58 / 82

Higher-order Programming

Exercise 3
For the following programs, find out whether they will exhause time or
space resources (or both):

3) Will it exhaust time/space resources or both?
function recur(x) {

return x(x);
}
recur(x => x(x(x)));

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 59 / 82

Studio Group Problems

Let’s discuss them now.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 60 / 82

Overview

1 More about recursion
From last week
Wishful thinking
Examples

2 Higher-order programming
Before we start
To understand higher-order programming
To use higher-order programming
Exercises

3 Language processing
Family of programming languages
From low-level to high-level
Compilation & interpretation

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 61 / 82

Language Processing

What does a programming language do?
A programming language is a formal language that specifies a set of
instructions that can be used to produce various kinds of output.
Programming languages consist of instructions for a computer.
Programming languages are used to create programs that implement
specific algorithms.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 62 / 82

Language Processing

History of programming languages
1940s: ENIAC coding system
1950s: Fortran, Lisp, Algol 58
1960s: CPL, BASIC
1970s: C, Pascal, Smalltalk, Prolog, Scheme, SQL
1980s: C++, Erlang, Perl
1990s: Haskell, Python, VB, Ruby, Lua, Java, JavaScript, PHP
2000s: C#, .NET, F#, Go, Swift
...

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 63 / 82

Language Processing

How to classify programming languages
According to programming paradigm: functional, object-oriented,
procedural, declarative, imperative, ...;
According to the way of execution: compile, interpret;
According to the field of usage: web, mobile, database, security,
design, scientific calculation, ...;
According to typing system: typed/untyped, static/dynamic typing,
strong/weak typing, ...;
...

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 64 / 82

Language Processing

How does the machine understand programs?
No, computers actually does not understand the programs written by
programmers.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 65 / 82

Language Processing

What does the machine understand?
Computers only understand byte-language (language of 0s and 1s).
This is because computer is an electronic machine, essentially, a lot of
electrical circuits.
For each circuit, there are only 2 states: on/off (have/no current).

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 66 / 82

Language Processing

What does “on/off” mean?
They simply refer to whether the circuit has current inside, i.e.,
whether open circuit or not.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 67 / 82

Language Processing

What is the work of CPU?
Each CPU has a set of basic operations () that it can perform directly.
The instructions that a CPU can execute are determined by its
instruction set architecture (ISA).
CPU can execute a program only if it is converted to machine code.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 68 / 82

Language Processing

Instruction set architecture (ISA)
There are mainly two families, following CISC and RISC paradigm.
x86/x86-64 is widely used on desktops and personal computers.
ARM is widely used on mobile devices, like smart phones, iPad, etc.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 69 / 82

Language Processing

Assembly language
Machine code is not human-readable.
To make life easier, people invent assembly languages which use
mnemonics (labels and symbols) to replace some 0s and 1s.
Assembly code can be converted to executable machine code using a
utility called assembler.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 70 / 82

Language Processing

High-level language
However, as you can see, assembly code is still very hard to maintain.
Therefore, people have invented more powerful languages later. They
usually use some English words as syntax, like C, Java and JavaScript.
We almost only use high-level languages nowadays.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 71 / 82

Language Processing

The “gap” now...
For CPU: they only understand low-level machine code;
For programmers: they only write codes in high-level languages.

Solution
Interpreter: a program that can execute another program written in
high-level languages, like JavaScript, Python, Ruby, etc.
Compiler: a program that compiles high-level language progams into
executable low-level languages, and waits for it to be executed, like C,
C++, etc.
Translator: a program that translates high-level languages to other
languages, like TypeScript, etc.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 72 / 82

Language Processing

T-diagrams - direct executable
You can directly write programs in machine code and they will be able
to execute directly (although your life will be painful).

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 73 / 82

Language Processing

Use T-diagrams - interpreter
However, in most cases, you should write programs in high-level
languages and use an interpreter to execute them.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 74 / 82

Language Processing

Use T-diagrams - compiler
For some other languages, they need a compiler to compile them to
low-level languages to be able to execute.
The translation may be done in multiple steps.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 75 / 82

Language Processing

Cross platform
Machine code may be different for different CPUs (x86/64, ARM).
That means, the same program cannot be used across different
paltforms (devices running on different hardware).
Is it possible for the same program to run anywhere?

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 76 / 82

Language Processing

Solution - virtual machine (VM)
We implement the same virtual machine (VM) for all platforms.
Therefore, other programs will be able to run anywhere as long as
they are converted into the “machine code” of this VM.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 77 / 82

Language Processing

Use T-diagrams - VM
A very famous example: Java Virtual Machine (JVM)

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 78 / 82

Language Processing

Use T-diagrams - VM
Not that famous example: “old” Source Virtual Machine (SVM)

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 79 / 82

Language Processing

Recommended modules at SoC
CS2104 Programming Language Concepts
CS4212 Compiler Design
CS6202 Advanced Topics in Programming Languages

Caution
Conceptual-oriented;
Abstract and theoretical.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 80 / 82

End

The End

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 81 / 82

Copyright

Niu Yunpeng © 2017 - 2018. Under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

Appropriate credits MUST be given when sharing, copying or redistributing
this material in any medium or format. No use for commercial purposes is
allowed.

This work is mostly an original by Niu Yunpeng . It may either directly or
indirectly benefit from the previous work of Martin Henz, Cai Deshun. For
illustration purposes, some pictures in the public domain are used. Upon
request, detailed acknowledgments will be provided.

Niu Yunpeng CS1101S Studio Week 4 September 4, 2018 82 / 82

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://yunpengn.github.io/

	More about recursion
	From last week
	Wishful thinking
	Examples

	Higher-order programming
	Before we start
	To understand higher-order programming
	To use higher-order programming
	Exercises

	Language processing
	Family of programming languages
	From low-level to high-level
	Compilation & interpretation

