
Welcome

CS1101S Studio Session Week 5:
Data Abstraction & List Processing

Niu Yunpeng

niuyunpeng@u.nus.edu

September 11, 2018

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 1 / 45

Overview

1 Data abstraction
What is data
To understand data structure
To use data structure

2 Pair & list
Pair processing
An “insider” problem
List processing
Exercises

3 Identity & equality
Identity in Source
Equality in Source

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 2 / 45

Data Abstraction

What is data?
Data is the storage of information.
Two kinds of information: states & procedures.
Procedures are the manipulation of states.

Data in the Source
To represent states: use variables;
To represent procedures: use functions.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 3 / 45

Data Abstraction

Still remember value() from coin_change?

function value(kind) {
return kind === 1 ? 5 :

kind === 2 ? 10 :
kind === 3 ? 20 :
kind === 4 ? 50 :
kind === 5 ? 100 :
0;

}

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 4 / 45

Data Abstraction

What is value() about?
We want to know the value for each kind of coins. We certainly can
store them in variables like coinA, coinB, coinC, etc.

What if we have too many kinds of coins?
We then need a well-organized structure to store all the data.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 5 / 45

Data Abstraction

What is data structure?
Data structure provides us with a well-organized way to store all
related information as a collection.
Data structure should provide functions so that we can arbitrarily
get/change the values inside.

getters
setters
...

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 6 / 45

Data Abstraction

Data structure & black-box abstraction
Data structure is a black-box.
We can use it to store and retrieve data without knowing things
inside.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 7 / 45

Data Abstraction

Use data structure with value()
The data structure should at least provide the functions below to use:

initialize(): to initialize a new data structure to store different
kinds of coins and their respective values;
add_new_kind(id, value): to add a new kind of coins to an
existing data structure with a unique identifier and its value;
get_value(id): to get the corresponding value of a certain kind of
coins by its unique identifier.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 8 / 45

Data Abstraction

To use data structure
Revisit the example on the lecture notes - rationals.
Try to understand how to design and build a tailor-made data
structure for a specific problem.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 9 / 45

Data Abstraction

Rational numbers
The data structure should at least provide the functions below to use:

make_rat(num, denom): make a rational number with its numerator
and its denominator;
get_num(rat): get the numerator of a rational;
get_denom(rat): get the denominator of a rational;
add_rat(a, b): add two rationals a and b;
sub_rat(a, b): subtract two rationals a and b;
mul_rat(a, b): multiply two rationals a and b;
div_rat(a, b): make a division of two rationals a and b;
equal_rat(a, b): check whether two rationals are equal;
rat_to_string(rat): convert a rational to a string.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 10 / 45

Data Abstraction

Make a rational number

function make_rat (num , denom) {
const divider = gcd(num , denom);
return pair(num / divider , denom / divider);

}

function get_num (rat) {
return head(rat);

}

function get_denom (rat) {
return tail(rat);

}

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 11 / 45

Data Abstraction

Rational number calculation

function add_rat (a, b) {
return make_rat (get_num (a) * get_denom (b) +

get_num (b) * get_denom (a),
get_denom (a) * get_denom (b));

}

function sub_rat (a, b) {
return make_rat (get_num (a) * get_denom (b) -

get_num (b) * get_denom (a),
get_denom (a) * get_denom (b));

}

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 12 / 45

Data Abstraction

Rational number calculation

function mul_rat (a, b) {
return make_rat (get_num (a) * get_num (b),

get_denom (a) * get_denom (b));
}

function div_rat (a, b) {
return make_rat (get_num (a) * get_denom (b),

get_denom (a) * get_num (b));
}

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 13 / 45

Data Abstraction

Others

function equal_rat (a, b) {
return get_num (a) === get_num (b) &&

get_denom (a) === get_denom (b);
}

function rat_to_string (rat) {
return get_num (rat) + "/" + get_denom (rat);

}

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 14 / 45

Overview

1 Data abstraction
What is data
To understand data structure
To use data structure

2 Pair & list
Pair processing
An “insider” problem
List processing
Exercises

3 Identity & equality
Identity in Source
Equality in Source

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 15 / 45

Pair & List Processing

Use pair as a data structure
The data structure should at least provide the functions below to use:

pair(x, y): construct a pair with two elements a and b;
head(some_pair): get the first element of a pair;
tail(some_pair): get the second element of a pair;
is_pair(some_pair): check whether an object is a pair.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 16 / 45

Pair & List Processing

Three ways to represent a pair
Use your code in the Source language;
Use box-and-pointer diagram (as the list visualizer);
Use square brackets (as the output in the interpreter).

Notice
The same applies to list later.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 17 / 45

Pair & List Processing

Three ways to represent a pair
Use your code in the Source language;
Use box-and-pointer diagram (as the list visualizer);
Use square brackets (as the output in the interpreter).

Example
const x = pair(3, pair(4, 5));

[3, [4, 5]]

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 18 / 45

Pair & List Processing

Consider: make_one_out_of_two

function make_one_out_of_two (a, b) {
return oper => oper(a, b);

}

function first(my_pair) {
return my_pair ((m, n) => m);

}

function second (my_pair) {
return my_pair ((m, n) => n);

}

const my_pair = make_one_out_of_two (1, 2);
first(my_pair);

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 19 / 45

Pair & List Processing

From pair to list
Sometimes, we need to store more than 2 variables in a data
structure.
Without list, we have to

pair(3, pair(1, pair(4, pair(1, pair(5, ...)))));

With list, we only need to
list(3, 1, 4, 1, 5, ...);

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 20 / 45

Pair & List Processing

Formal definition
A list is either an empty list or a pair whose tail is a list.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 21 / 45

Pair & List Processing

Use list as a data structure
Up to now, we have the following functions to use:

list(x, y, z, ...): construct a list with n elements;
head(lst): get the first element of a list;
tail(lst): get the remaining part of a list;
is_list(lst): check whether an object is a list;
is_empty_list(lst): check whether an object is a list and empty;
length(lst): count the number of elements in a list.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 22 / 45

Pair & List Processing

Recap: three ways to represent pair and list
Use your code in the Source language;
Use box-and-pointer diagram (as the list visualizer);
Use square brackets (as the output in the interpreter).

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 23 / 45

Pair & List Processing

Exercise 1
Draw the box-and-pointer diagrams for each one of them below:
const lstA = list(list ([], 1, list ([], 2, [])),

3,
list ([], 4, []));

const p1 = pair (4, []);
const p2 = pair (3, p1);
const lstB = list (1, pair (2, p2));

const z1 = pair (1, 3);
const z2 = list (3, z1);
const lstC = list(tail(z2), z1 , head(z1));

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 24 / 45

Pair & List Processing

Exercise 2
Write Source programs which can produce the box-and-pointer diagrams
below (The head of the whole list should be pointing to “start”):

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 25 / 45

Pair & List Processing

Exercise 3
Given two lists of the same length xs and ys, try to construct a 3rd list of
the same length in which each element is a pair composed of the element
on the same position from xs and ys. Your function name should be
make_pairs.

Example
For example, for make_pairs(list(1, 2, 3), list(11, 12, 13)), it
should return list(pair(1, 11), pair(2, 12), pair(3, 13)).

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 26 / 45

Pair & List Processing

Exercise 3
Now, generalize this concept by defining a new function. Given two lists of
the same length xs and ys, try to construct a 3rd list of the same length
in which each element is the result of applying a certain zip function to
the two elements on the same position from xs and ys. Your function
name should be zip.

Example
For example, if we apply
zip ((x, y) => x * y,

list (1, 2, 3),
list (11, 12, 13));

it will return list(11, 24, 39).

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 27 / 45

Pair & List Processing

Exercise 4 - BST
A binary search tree (BST) is either an empty list or a list with three
elements: a left child BST, a number x , and a right child BST. Notice
that every number in the left BST is smaller than the number x , and every
number in the right BST is larger than the number x .

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 28 / 45

Pair & List Processing

Exercise 4 - BST
The first step to understand how to use BST is to have a try. Given 5
numbers 1...5, try to store them in a BST. Then, you should use the 3
ways to represent this list (notice: BST is just a special kind of list).
The answer may not be unique.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 29 / 45

Pair & List Processing

Exercise 4 - BST
The data structure should at least provide the functions below to use:

get_min(tree): get the smallest element in a BST;
get_max(tree): get the largest element in a BST;
search(tree, x): check whether a number exists in a BST;
height(tree): get the height of a BST;
bst_to_list(tree): convert a BST into a list.

Task
Implement all these functions mentioned above and other necessary
functions that should be supported by a BST library.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 30 / 45

Overview

1 Data abstraction
What is data
To understand data structure
To use data structure

2 Pair & list
Pair processing
An “insider” problem
List processing
Exercises

3 Identity & equality
Identity in Source
Equality in Source

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 31 / 45

Identity & Equality

Identity vs Equality
Identity means exactly the same thing. Usually, they represent just
the different namings for the same object.
Equality means two things hold the same value (or have the same
structure). They are two different things, however, their value is
equal.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 32 / 45

Identity & Equality

Twins...
Are they the same person?
Do they look the same?

Think about it...
Identity?
Equality?

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 33 / 45

Identity & Equality

To compare identity in Source
boolean: straightforward;
string: straightforward;
numeral: trivial for integers, non-deterministic for non-integers;
function: two functions are always not identical;
pair/list: two pairs/lists are always not identical.
...

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 34 / 45

Identity & Equality

Exercise 1
Find out the result of the following statements:
true && false || true && false === false;

’Source ’ === " Source ";

1101 === "1101";

1 / 5 + 1 / 5 === 2 / 5;

1 / 5 + 1 / 5 + 1 / 5 === 3 / 5;

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 35 / 45

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence

Identity & Equality

Exercise 2
Find out the result of the following statements:
function plus(a, b) {

return a + b;
}

function add(a, b) {
return a + b;

}

plus === add;

plus (2, 3) === add (2, 3);

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 36 / 45

Identity & Equality

Exercise 3
Find out the result of the following statements:
function plus(a, b) {

return a + b;
}

const add = plus;

plus === add;

plus (2, 3) === add (2, 3);

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 37 / 45

Identity & Equality

Exercise 4
Find out the result of the following statements:
function plus(a, b) {

return a + b;
}

function add () {
return plus;

}

plus === add;

plus === add ();

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 38 / 45

Identity & Equality

Exercise 5
Find out the result of the following statements:
[] === [];

pair (2, 3) === pair (3, 4);

const my_pair = pair("NUS", " CS1101S ");
const list1 = list (1, my_pair , 2);
const list2 = list (3, 4, my_pair);
head(tail(list1)) === head(tail(tail(list2)));

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 39 / 45

Identity & Equality

To compare equality in Source
Two objects are equal in Source if and only if (iff)

they have the same structure;
their constituent primitives are identical.

Specification
boolean, string, numeral: the same as identity;
empty list: always equal;
pair, list: equal iff their head and tail are both equal.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 40 / 45

Identity & Equality

To compare equality in Source

function equal(a, b) {
if (is_empty_list (a) && is_empty_list (b)) {

return true;
} else if (is_list (a) && is_list (b)) {

return equal(head(a), head(b)) &&
equal(tail(a), tail(b));

} else {
return a === b;

}
}

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 41 / 45

Identity & Equality

Exercise
Find out the result of the following statements:
equal (1 / 5 + 1 / 5 + 1 / 5, 3 / 5);

equal(list (1, 2), list("1", 2));

equal(list ([]) , pair ([], []));

equal(list (), tail(list ([])));

equal(pair (1, x => x),
pair (1, x => x));

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 42 / 45

Studio Group Problems

Let’s discuss them now.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 43 / 45

End

The End

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 44 / 45

Copyright

Niu Yunpeng © 2017 - 2018. Under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

Appropriate credits MUST be given when sharing, copying or redistributing
this material in any medium or format. No use for commercial purposes is
allowed.

This work is mostly an original by Niu Yunpeng . It may either directly or
indirectly benefit from the previous work of Martin Henz, Cai Deshun. For
illustration purposes, some pictures in the public domain are used. Upon
request, detailed acknowledgments will be provided.

Niu Yunpeng CS1101S Studio Week 5 September 11, 2018 45 / 45

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://yunpengn.github.io/

	Data abstraction
	What is data
	To understand data structure
	To use data structure

	Pair & list
	Pair processing
	An ``insider'' problem
	List processing
	Exercises

	Identity & equality
	Identity in Source
	Equality in Source

