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Before We Start

Robot - LEGO Mindstorms ev3
Robot grouping done randomly in Week 6 Studio
Robot kit issued in Week 7 Studio
Robot mission assessment in Week 8 Studio
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Before We Start

Robot grouping - work as a team!
Group 81:

Chen Yuanbo
Chong Zi Kang
Lim Kang Yee
Syed Muhammad Zain Alam

Group 82:
Dorcas Tabitha Tan
Eugene Tan Yew Chin
Ng Jun Rong, Terence
Shawn Chew
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Overview

1 Identity & equality
Review

2 List processing
From last week
List library

3 Tree processing
Search

4 One more thing about recursion
Permutation
Combination
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Identity & Equality

To compare identity in Source
boolean: straightforward;
string: straightforward;
numeral: trivial for integers, non-deterministic for non-integers;
function: two functions are always not identical;
pair/list: two pairs/lists are always not identical.
...
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Identity & Equality

To compare equality in Source

function equal(a, b) {
if ( is_empty_list (a) && is_empty_list (b)) {

return true;
} else if ( is_list (a) && is_list (b)) {

return equal(head(a), head(b)) &&
equal(tail(a), tail(b));

} else {
return a === b;

}
}
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Identity & Equality

Exercises
Find out the result of the following statements:
true && false || true && false === true;

1 / 5 + 2 / 5 === 3 / 5;

math_pow (2, 53) === math_pow (2, 53) + 1;

equal(pair (1, x => x), pair (1, x => x));
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List Processing

Revisit pair & list
Pair is a simple data structure that stores a head and a list;
A list is either an empty list or a pair whose tail is a list.

Three ways to represent pair and list
Use your code in the Source language;
Use box-and-pointer diagram (as the list visualizer);
Use square brackets (as the output in the interpreter).
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List Processing

Use pair as a data structure
The data structure should at least provide the functions below to use:

pair(x, y): construct a pair with two elements a and b;
head(some_pair): get the first element of a pair;
tail(some_pair): get the second element of a pair;
is_pair(some_pair): check whether an object is a pair.
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List Processing

List library from last week
Up to last week, we have the following functions to use:

list(x, y, z, ...): construct a list with n elements;
head(lst): get the first element of a list;
tail(lst): get the remaining part of a list;
is_list(lst): check whether an object is a list;
is_empty_list(lst): check whether an object is a list and empty;
length(lst): count the number of elements in a list.
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List Processing

New library functions for this week
Up to now, the list library supports different kinds of functions:

List builder: list, build_list, enum_list;
List getter: head, tail, list_ref, member, is_member;
List information: is_list, is_empty_list, length, equal;
List modifier: append, reverse, remove, remove_all, filter,
map, for_each;
List converter: accumulate, list_to_string.
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List Processing

List builder
The following functions can be used to build a list:

list(x, y, z, ...): construct a list with n elements;
build_list(n, func): construct a list by applying a unary function
func to every integer from 0 to n − 1;
enum_list(x, y): construct a list composed of every integer from x
to y (both inclusive).
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List Processing

List getter
The following functions can be used to get the element in a list:

head(lst): get the first element of a list;
tail(lst): get the remaining part of a list;
list_ref(lst, n): return the nth element in a list, where the index
starts from 0;
member(x, lst): return the first sublist whose head is identical to
x , or an empty list if x if not in the list;
is_member(x, lst): returns whether x is in the list.
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List Processing

List information
The following functions can be used to check the information of a list:

is_list(lst): check whether an object is a list;
is_empty_list(lst): check whether an object is a list and empty;
length(lst): count the number of elements in a list;
equal(lst1, lst2): check the equality of two pairs/lists/trees.
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List Processing

List modifier
The following functions can be used to modify a list:

append(xs, ys): return a new list that ys is appended to xs;
reverse(lst): return a new list in the reverse order of lst;
remove(x, lst): return a new list by removing the first element in
the list which is identical to x ;
remove_all(x, lst): return a new list by removing all elements in
the list whichever is identical to x ;
filter(func, lst): apply a unary function func to every element
in the list, and return a new list which only contains elements whose
return value of func is true;
map(func, lst): return a new list by element-wise applying a unary
function func.
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List Processing

List converter
The following functions can be used to convert a list to other formats:

accumulate(func, base, lst): recursively apply a binary function
func to every element in a list from right to left. Start from base and
return the final result. The return value of the binary function func
should be in the same type as base so that we can convert the list
into the type of base.
list_to_string(lst): return a string that represents the list in the
format of square brackets.
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List Processing

Notice
In the following slides, you are going to see a straightforward version
for implementation of the list library.
You should be aware this implementation is only for demonstration
purpose, the actual implementation in Source is different.
Also, we will consider empty list [], is_pair, is_empty_list and
list as built-in system functions.
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List Processing

List library implementation

// Straightforward implementation for list library in Source
// Niu Yunpeng @ CS1101S 2016 - 2018
function pair(x, y) {

return oper => oper(a, b);
}

function head( my_pair ) {
return my_pair ((m, n) => m);

}

function tail( my_pair ) {
return my_pair ((m, n) => n);

}
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List Processing

List library implementation

// This version gives rise to a recursive process .
function build_list (n, func) {

function build(x) {
return x === n ? [] : pair(func(x), build(x + 1));

}
return build (0);

}

// This version gives rise to an iterative process .
function build_list (n, func) {

function iter(x, lst) {
return n < 0 ? lst : iter(x - 1, pair(func(x),lst));

}
return build(n - 1, []);

}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 20 / 68



List Processing

List library implementation

// This version gives rise to a recursive provess .
function enum_list (x, y) {

return x > y ? [] : pair(x, enum_list (x + 1, y));
}

// This version gives rise to an iterative process .
function enum_list (x, y) {

function iter(n, lst) {
return n < x ? lst : iter(n - 1, pair(n, lst));

}
return iter(y, []);

}

function list_ref (lst , n) {
return n === 0 ? head(lst) : list_ref (tail(lst), n - 1);

}
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List Processing

List library implementation

function member (x, lst) {
if ( is_empty_list (lst)) {

return [];
} else {

return head(lst) === x ? lst
: member (x, tail(lst));

}
}

function is_member (x, lst) {
return ! is_empty_list ( member (x, lst));

}
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List Processing

List library implementation

function is_list (lst) {
if ( is_empty_list (lst)) {

return true;
} else {

return is_pair (lst) && is_list (tail(lst));
}

}

function is_empty_list (lst) {
// Built -in system function

}

function is_pair (lst) {
// Built -in system function

}
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List Processing

List library implementation

// This version gives rise to a recursive process .
function length (lst) {

return is_empty_list (lst) ? 0 : 1 + length (tail(lst));
}

// This version gives rise to an iterative process .
function length (lst) {

function iter(lst , len) {
return is_empty_list (lst) ? len

: iter(tail(lst), len + 1);
}

return iter(lst , 0);
}
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List Processing

List library implementation

// Notice : Week 6 still does not support set_tail yet.
// This version gives rise to a recursive process .
function append (xs , ys) {

if ( is_empty_list (xs)) {
return ys;

} else {
return pair(head(xs), append (tail(xs), ys));

}
}
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List Processing

List library implementation

// This version gives rise to a recursive process .
function reverse (lst) {

if ( is_empty_list (lst)) {
return lst;

} else {
return append ( reverse (tail(lst)), list(head(lst)));

}
}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 26 / 68



List Processing

List library implementation

// This version gives rise to an iterative process .
function reverse (lst) {

function iter(origin , reversed ) {
if ( is_empty_list ( origin )) {

return reversed ;
} else {

return iter(tail( origin ),
pair(head( origin ), reversed ));

}
}

return iter(lst , []);
}
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List Processing

List library implementation

// Notice : Week 6 still does not support set_tail yet.
// This version gives rise to a recursive process .
function remove (x, lst) {

if ( is_empty_list (lst)) {
return lst;

} else if (head(lst) === x) {
return tail(lst);

} else {
return pair(head(lst , remove (x, tail(lst))));

}
}
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List Processing

List library implementation

// Notice : Week 6 still does not support set_tail yet.
// This version gives rise to a recursive process .
function remove_all (x, lst) {

if ( is_empty_list (lst)) {
return lst;

} else if (head(lst) === x) {
return remove_all (x, tail(lst));

} else {
return pair(head(lst , remove_all (x, tail(lst))));

}
}
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List Processing

List library implementation

// Notice : Week 6 still does not support set_tail yet.
// This version gives rise to a recursive process .
function filter (func , lst) {

if ( is_empty_list (lst)) {
return lst;

} else if (func(head(x))) {
return filter (x, tail(lst));

} else {
return pair(head(lst , filter (func , tail(lst))));

}
}
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List Processing

List library implementation

// Notice : Week 6 still does not support set_head yet.
// This version gives rise to a recursive process .
function map(func , lst) {

if ( is_empty_list (lst)) {
return lst;

} else {
return pair(func(head(lst)), map(func , tail(lst)));

}
}
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List Processing

List library implementation

// This version gives rise to a recursive process .
function accumulate (func , base , lst) {

if ( is_empty_list (lst)) {
return base;

} else {
return func(head(lst),

accumulate (func , base , tail(lst)));
}

}
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List Processing

List library implementation

// This version gives rise to an iterative process .
function accumulate (func , base , lst) {

function iter(lst , result ) {
if ( is_empty_list (lst)) {

return result ;
} else {

return iter(tail(lst), func(head(lst), result ));
}

}

return iter( reverse (lst), base);
}
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Tree Processing

From list to tree
The definition of list is: A list is either an empty list or a pair whose
tail is a list.
Therefore, the head of a list does not have to be a simple item.
Indeed, the head of a list may be a list as well.
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Tree Processing
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Tree Processing

Trees in Computer Science
Binary Search Tree (BST)
Minimum Spanning Tree (MST)
Shortest Path Tree
AVL Tree
Red-black Tree
Skip List
van Emde Boas Tree
B Tree
Fibonacci Tree
...
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Tree Processing

To use tree as a data structure
The tree library is different from list library:

count_leaves(tree): count the number of leaves in a tree;
tree_map(tree): element-wise map on a tree;
tree_reverse(tree): reverse the order of all leaves in a tree;
...

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 38 / 68



Tree Processing

Search
We shall introduce two algorithms for searching:

linear search: based on list;
binary search: based on tree;
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Tree Processing

Linear search

function linear_search (xs , x) {
if ( is_empty_list (xs)) {

return false;
} else {

return head(xs) === x ? true
: linear_search (tail(xs), x);

}
}
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Tree Processing

Binary Tree
Each node has two children.
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Tree Processing

Binary Search Tree
Each node has two children;
Left child is always smaller than right child.
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Tree Processing

Binary Search
Decide to go left or right.
Let’s search for 52.
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Recursion

Classical examples of recursion
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change
Permutation / combination
...
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Recursion

Examples that we have already covered before...
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change
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Recursion

Last things about recursion...
Permutation
Combination
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Recursion

Permutation
In mathematics, the notion of permutation relates to the act of
arranging all the members of a set into some sequence or order.
Here, we care about how to list all the permutations of a given set.

Example
Given a set S = {1, 2, 3}, then:
The permutation of S is

{{1, 2, 3} , {1, 3, 2} , {2, 1, 3} , {2, 3, 1} , {3, 1, 2} , {3, 2, 1}}
The number of permutation of S is 6.
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Recursion

Idea about permutation
There is only 1 permutation of [] - itself.
For each element x in S:

Generate all permutations of S − x recursively;
Prepand x in front of each one of them.

Join all results together.
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Recursion

Permutation

function permutation (lst) {
if ( is_empty_list (lst)) {

return list ([]);
} else {

return accumulate (
append , [],
map(x => map(other => pair(x, other),

permutation ( remove (x, lst))),
lst));

}
}
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Recursion

r-Permutation
In elementary combinatorics, r-permutation usually refers to the act
of arranging k elements taken from a set of size n into some order or
sequence, where k ≤ n.

Example
Given a set S = {1, 2, 3}, then:
The 2-permutation of S is

{{1, 2} , {2, 1} , {1, 3} , {3, 1} , {2, 3} , {3, 2}}
The number of 2-permutation of S is 6.
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Recursion

r-Permutation

function r_permutation (lst , r) {
if (r === 0) {

return list ([]);
} else if ( is_empty_list (lst)) {

return [];
} else {

return accumulate (
append , [],
map(x => map(other => pair(x, other),

r_permutation ( remove (x, lst),
r - 1)),

lst));
}

}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 52 / 68



Recursion

k-Combination
In mathematics, a combination is a way of selecting items from a set
such that the order of selection does not matter. A k-combination of
a set S is a subset of k distinct elements from S.
The number of k-combinations is equal to the binomial coefficient(n

k
)

= n !
k !·(n−k) !

Example
Given a set S = {1, 2, 3}, then:
The 2-combination of S is

{{1, 2} , {1, 3} , {2, 3}}
The number of 2-combination of S is 3.
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Recursion

Idea abou k-combination
Instead of arranging elements into a specific order, we need to select
a certain number of elements now.
For each element, we have two choices: to select or to not select.

Hint
Similar to the coin change problem.
Instead of counting the number of leaves in the decision tree, we want
to list all possible paths from the root to every leaf.
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Recursion

k-Combination

function k_combination (lst , k) {
if (k === 0) {

return list ([]);
} else if ( is_empty_list (lst)) {

return [];
} else {

const with_head =
map(other => pair(head(lst), other),

k_combination (tail(lst), k - 1));
const without_head = k_combination (tail(lst), k);

return append (with_head , without_head );
}

}
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Recursion

Examples that we have already covered so far...
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change
Permutation/combination
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Recursion

Congratulations!
You have finished the course from Department of Recursion, Faculty
of Abstraction, University of Wishful Thinking !
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Recursion

Recursion in Google Search
Try to search for “recursion” in Google:

Thus...
Now, you know why “Google is always your best friend”, right?
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Studio Group Problems

Let’s discuss them now.
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Studio Group Problems

Let’s work together!
We will use a realtime collaborative platform “SourceMD”, which
uses “CodiMD”, which in turn is based on “HackMD”.
For this week, click https://tinyurl.com/cs1101s-w6
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Studio Group Problems

Question 1
Write the function map using accumulate. In order to define your map
function in the Source, you need to give it a name different from the
pre-declared name map, for example map_.

Hint: the function body should have only one line.
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Studio Group Problems

Question 2
Write a function called remove_duplicates that takes in a list as its only
argument and returns a list with duplicate elements removed. The order of
the elements in the returned list does not matter.

Please provide two different implementations of remove_duplicates:
Use filter only
Use accumulate only
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Studio Group Problems

Question 3
Write a function makeup_amount which takes as parameters the amount x
and a list l of all the coins available, and returns a list of lists, such that
each sub-list of the result contains a valid combination to make up x.

Notice:
l is a list of coins, not a list of kinds of coins. For instance, if there
are two 5’s in the list, that means we have two 5-cent coins.
A combination may appear more than once, since it may be using
different coins of the same denomination.
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Studio Group Problems

Question 4
Implement a function tree_accumulate that behaves like accumulate
but can also work on trees. You may want to use accumulate to
implement it.
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Studio Group Problems

Question 5
Implement a function accumulate_n similar to accumulate except that it
takes as its third argument a list of lists, which are all assumed to have the
same number of elements. It applies the designated accumulation function
to combine all the first elements of the sequences, all the second elements
of the sequences, and so on, and returns a list of the results.

For instance, if we have const lst = list(list(1, 2), list(3, 4),
list(5, 6)), the return value of accumulate_n((x, y) => x + y,
0, lst) is list(9, 12), where 9 = 1 + 3 + 5 and 12 = 2 + 4 + 6.
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Studio Group Problems

Question 6
Let’s use list to represent sets. Each element of the set appears exactly
once in its list representation, and the order does not matter. Write a
function subsets that takes a list as the only parameter, and returns a list
of lists, each representing a unique subset of the given set.
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End

The End
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