
Welcome

CS1101S Studio Session Week 6:
List & Tree Processing

Niu Yunpeng

niuyunpeng@u.nus.edu

September 18, 2018

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 1 / 68

Before We Start

Robot - LEGO Mindstorms ev3
Robot grouping done randomly in Week 6 Studio
Robot kit issued in Week 7 Studio
Robot mission assessment in Week 8 Studio

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 2 / 68

Before We Start

Robot grouping - work as a team!
Group 81:

Chen Yuanbo
Chong Zi Kang
Lim Kang Yee
Syed Muhammad Zain Alam

Group 82:
Dorcas Tabitha Tan
Eugene Tan Yew Chin
Ng Jun Rong, Terence
Shawn Chew

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 3 / 68

Overview

1 Identity & equality
Review

2 List processing
From last week
List library

3 Tree processing
Search

4 One more thing about recursion
Permutation
Combination

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 4 / 68

Identity & Equality

To compare identity in Source
boolean: straightforward;
string: straightforward;
numeral: trivial for integers, non-deterministic for non-integers;
function: two functions are always not identical;
pair/list: two pairs/lists are always not identical.
...

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 5 / 68

Identity & Equality

To compare equality in Source

function equal(a, b) {
if (is_empty_list (a) && is_empty_list (b)) {

return true;
} else if (is_list (a) && is_list (b)) {

return equal(head(a), head(b)) &&
equal(tail(a), tail(b));

} else {
return a === b;

}
}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 6 / 68

Identity & Equality

Exercises
Find out the result of the following statements:
true && false || true && false === true;

1 / 5 + 2 / 5 === 3 / 5;

math_pow (2, 53) === math_pow (2, 53) + 1;

equal(pair (1, x => x), pair (1, x => x));

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 7 / 68

Overview

1 Identity & equality
Review

2 List processing
From last week
List library

3 Tree processing
Search

4 One more thing about recursion
Permutation
Combination

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 8 / 68

List Processing

Revisit pair & list
Pair is a simple data structure that stores a head and a list;
A list is either an empty list or a pair whose tail is a list.

Three ways to represent pair and list
Use your code in the Source language;
Use box-and-pointer diagram (as the list visualizer);
Use square brackets (as the output in the interpreter).

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 9 / 68

List Processing

Use pair as a data structure
The data structure should at least provide the functions below to use:

pair(x, y): construct a pair with two elements a and b;
head(some_pair): get the first element of a pair;
tail(some_pair): get the second element of a pair;
is_pair(some_pair): check whether an object is a pair.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 10 / 68

List Processing

List library from last week
Up to last week, we have the following functions to use:

list(x, y, z, ...): construct a list with n elements;
head(lst): get the first element of a list;
tail(lst): get the remaining part of a list;
is_list(lst): check whether an object is a list;
is_empty_list(lst): check whether an object is a list and empty;
length(lst): count the number of elements in a list.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 11 / 68

List Processing

New library functions for this week
Up to now, the list library supports different kinds of functions:

List builder: list, build_list, enum_list;
List getter: head, tail, list_ref, member, is_member;
List information: is_list, is_empty_list, length, equal;
List modifier: append, reverse, remove, remove_all, filter,
map, for_each;
List converter: accumulate, list_to_string.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 12 / 68

List Processing

List builder
The following functions can be used to build a list:

list(x, y, z, ...): construct a list with n elements;
build_list(n, func): construct a list by applying a unary function
func to every integer from 0 to n − 1;
enum_list(x, y): construct a list composed of every integer from x
to y (both inclusive).

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 13 / 68

List Processing

List getter
The following functions can be used to get the element in a list:

head(lst): get the first element of a list;
tail(lst): get the remaining part of a list;
list_ref(lst, n): return the nth element in a list, where the index
starts from 0;
member(x, lst): return the first sublist whose head is identical to
x , or an empty list if x if not in the list;
is_member(x, lst): returns whether x is in the list.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 14 / 68

List Processing

List information
The following functions can be used to check the information of a list:

is_list(lst): check whether an object is a list;
is_empty_list(lst): check whether an object is a list and empty;
length(lst): count the number of elements in a list;
equal(lst1, lst2): check the equality of two pairs/lists/trees.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 15 / 68

List Processing

List modifier
The following functions can be used to modify a list:

append(xs, ys): return a new list that ys is appended to xs;
reverse(lst): return a new list in the reverse order of lst;
remove(x, lst): return a new list by removing the first element in
the list which is identical to x ;
remove_all(x, lst): return a new list by removing all elements in
the list whichever is identical to x ;
filter(func, lst): apply a unary function func to every element
in the list, and return a new list which only contains elements whose
return value of func is true;
map(func, lst): return a new list by element-wise applying a unary
function func.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 16 / 68

List Processing

List converter
The following functions can be used to convert a list to other formats:

accumulate(func, base, lst): recursively apply a binary function
func to every element in a list from right to left. Start from base and
return the final result. The return value of the binary function func
should be in the same type as base so that we can convert the list
into the type of base.
list_to_string(lst): return a string that represents the list in the
format of square brackets.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 17 / 68

List Processing

Notice
In the following slides, you are going to see a straightforward version
for implementation of the list library.
You should be aware this implementation is only for demonstration
purpose, the actual implementation in Source is different.
Also, we will consider empty list [], is_pair, is_empty_list and
list as built-in system functions.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 18 / 68

List Processing

List library implementation

// Straightforward implementation for list library in Source
// Niu Yunpeng @ CS1101S 2016 - 2018
function pair(x, y) {

return oper => oper(a, b);
}

function head(my_pair) {
return my_pair ((m, n) => m);

}

function tail(my_pair) {
return my_pair ((m, n) => n);

}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 19 / 68

List Processing

List library implementation

// This version gives rise to a recursive process .
function build_list (n, func) {

function build(x) {
return x === n ? [] : pair(func(x), build(x + 1));

}
return build (0);

}

// This version gives rise to an iterative process .
function build_list (n, func) {

function iter(x, lst) {
return n < 0 ? lst : iter(x - 1, pair(func(x),lst));

}
return build(n - 1, []);

}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 20 / 68

List Processing

List library implementation

// This version gives rise to a recursive provess .
function enum_list (x, y) {

return x > y ? [] : pair(x, enum_list (x + 1, y));
}

// This version gives rise to an iterative process .
function enum_list (x, y) {

function iter(n, lst) {
return n < x ? lst : iter(n - 1, pair(n, lst));

}
return iter(y, []);

}

function list_ref (lst , n) {
return n === 0 ? head(lst) : list_ref (tail(lst), n - 1);

}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 21 / 68

List Processing

List library implementation

function member (x, lst) {
if (is_empty_list (lst)) {

return [];
} else {

return head(lst) === x ? lst
: member (x, tail(lst));

}
}

function is_member (x, lst) {
return ! is_empty_list (member (x, lst));

}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 22 / 68

List Processing

List library implementation

function is_list (lst) {
if (is_empty_list (lst)) {

return true;
} else {

return is_pair (lst) && is_list (tail(lst));
}

}

function is_empty_list (lst) {
// Built -in system function

}

function is_pair (lst) {
// Built -in system function

}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 23 / 68

List Processing

List library implementation

// This version gives rise to a recursive process .
function length (lst) {

return is_empty_list (lst) ? 0 : 1 + length (tail(lst));
}

// This version gives rise to an iterative process .
function length (lst) {

function iter(lst , len) {
return is_empty_list (lst) ? len

: iter(tail(lst), len + 1);
}

return iter(lst , 0);
}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 24 / 68

List Processing

List library implementation

// Notice : Week 6 still does not support set_tail yet.
// This version gives rise to a recursive process .
function append (xs , ys) {

if (is_empty_list (xs)) {
return ys;

} else {
return pair(head(xs), append (tail(xs), ys));

}
}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 25 / 68

List Processing

List library implementation

// This version gives rise to a recursive process .
function reverse (lst) {

if (is_empty_list (lst)) {
return lst;

} else {
return append (reverse (tail(lst)), list(head(lst)));

}
}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 26 / 68

List Processing

List library implementation

// This version gives rise to an iterative process .
function reverse (lst) {

function iter(origin , reversed) {
if (is_empty_list (origin)) {

return reversed ;
} else {

return iter(tail(origin),
pair(head(origin), reversed));

}
}

return iter(lst , []);
}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 27 / 68

List Processing

List library implementation

// Notice : Week 6 still does not support set_tail yet.
// This version gives rise to a recursive process .
function remove (x, lst) {

if (is_empty_list (lst)) {
return lst;

} else if (head(lst) === x) {
return tail(lst);

} else {
return pair(head(lst , remove (x, tail(lst))));

}
}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 28 / 68

List Processing

List library implementation

// Notice : Week 6 still does not support set_tail yet.
// This version gives rise to a recursive process .
function remove_all (x, lst) {

if (is_empty_list (lst)) {
return lst;

} else if (head(lst) === x) {
return remove_all (x, tail(lst));

} else {
return pair(head(lst , remove_all (x, tail(lst))));

}
}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 29 / 68

List Processing

List library implementation

// Notice : Week 6 still does not support set_tail yet.
// This version gives rise to a recursive process .
function filter (func , lst) {

if (is_empty_list (lst)) {
return lst;

} else if (func(head(x))) {
return filter (x, tail(lst));

} else {
return pair(head(lst , filter (func , tail(lst))));

}
}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 30 / 68

List Processing

List library implementation

// Notice : Week 6 still does not support set_head yet.
// This version gives rise to a recursive process .
function map(func , lst) {

if (is_empty_list (lst)) {
return lst;

} else {
return pair(func(head(lst)), map(func , tail(lst)));

}
}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 31 / 68

List Processing

List library implementation

// This version gives rise to a recursive process .
function accumulate (func , base , lst) {

if (is_empty_list (lst)) {
return base;

} else {
return func(head(lst),

accumulate (func , base , tail(lst)));
}

}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 32 / 68

List Processing

List library implementation

// This version gives rise to an iterative process .
function accumulate (func , base , lst) {

function iter(lst , result) {
if (is_empty_list (lst)) {

return result ;
} else {

return iter(tail(lst), func(head(lst), result));
}

}

return iter(reverse (lst), base);
}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 33 / 68

Overview

1 Identity & equality
Review

2 List processing
From last week
List library

3 Tree processing
Search

4 One more thing about recursion
Permutation
Combination

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 34 / 68

Tree Processing

From list to tree
The definition of list is: A list is either an empty list or a pair whose
tail is a list.
Therefore, the head of a list does not have to be a simple item.
Indeed, the head of a list may be a list as well.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 35 / 68

Tree Processing

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 36 / 68

Tree Processing

Trees in Computer Science
Binary Search Tree (BST)
Minimum Spanning Tree (MST)
Shortest Path Tree
AVL Tree
Red-black Tree
Skip List
van Emde Boas Tree
B Tree
Fibonacci Tree
...

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 37 / 68

Tree Processing

To use tree as a data structure
The tree library is different from list library:

count_leaves(tree): count the number of leaves in a tree;
tree_map(tree): element-wise map on a tree;
tree_reverse(tree): reverse the order of all leaves in a tree;
...

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 38 / 68

Tree Processing

Search
We shall introduce two algorithms for searching:

linear search: based on list;
binary search: based on tree;

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 39 / 68

Tree Processing

Linear search

function linear_search (xs , x) {
if (is_empty_list (xs)) {

return false;
} else {

return head(xs) === x ? true
: linear_search (tail(xs), x);

}
}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 40 / 68

Tree Processing

Binary Tree
Each node has two children.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 41 / 68

Tree Processing

Binary Search Tree
Each node has two children;
Left child is always smaller than right child.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 42 / 68

Tree Processing

Binary Search
Decide to go left or right.
Let’s search for 52.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 43 / 68

Overview

1 Identity & equality
Review

2 List processing
From last week
List library

3 Tree processing
Search

4 One more thing about recursion
Permutation
Combination

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 44 / 68

Recursion

Classical examples of recursion
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change
Permutation / combination
...

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 45 / 68

Recursion

Examples that we have already covered before...
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 46 / 68

Recursion

Last things about recursion...
Permutation
Combination

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 47 / 68

Recursion

Permutation
In mathematics, the notion of permutation relates to the act of
arranging all the members of a set into some sequence or order.
Here, we care about how to list all the permutations of a given set.

Example
Given a set S = {1, 2, 3}, then:
The permutation of S is

{{1, 2, 3} , {1, 3, 2} , {2, 1, 3} , {2, 3, 1} , {3, 1, 2} , {3, 2, 1}}
The number of permutation of S is 6.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 48 / 68

Recursion

Idea about permutation
There is only 1 permutation of [] - itself.
For each element x in S:

Generate all permutations of S − x recursively;
Prepand x in front of each one of them.

Join all results together.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 49 / 68

Recursion

Permutation

function permutation (lst) {
if (is_empty_list (lst)) {

return list ([]);
} else {

return accumulate (
append , [],
map(x => map(other => pair(x, other),

permutation (remove (x, lst))),
lst));

}
}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 50 / 68

Recursion

r-Permutation
In elementary combinatorics, r-permutation usually refers to the act
of arranging k elements taken from a set of size n into some order or
sequence, where k ≤ n.

Example
Given a set S = {1, 2, 3}, then:
The 2-permutation of S is

{{1, 2} , {2, 1} , {1, 3} , {3, 1} , {2, 3} , {3, 2}}
The number of 2-permutation of S is 6.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 51 / 68

Recursion

r-Permutation

function r_permutation (lst , r) {
if (r === 0) {

return list ([]);
} else if (is_empty_list (lst)) {

return [];
} else {

return accumulate (
append , [],
map(x => map(other => pair(x, other),

r_permutation (remove (x, lst),
r - 1)),

lst));
}

}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 52 / 68

Recursion

k-Combination
In mathematics, a combination is a way of selecting items from a set
such that the order of selection does not matter. A k-combination of
a set S is a subset of k distinct elements from S.
The number of k-combinations is equal to the binomial coefficient(n

k
)

= n !
k !·(n−k) !

Example
Given a set S = {1, 2, 3}, then:
The 2-combination of S is

{{1, 2} , {1, 3} , {2, 3}}
The number of 2-combination of S is 3.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 53 / 68

Recursion

Idea abou k-combination
Instead of arranging elements into a specific order, we need to select
a certain number of elements now.
For each element, we have two choices: to select or to not select.

Hint
Similar to the coin change problem.
Instead of counting the number of leaves in the decision tree, we want
to list all possible paths from the root to every leaf.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 54 / 68

Recursion

k-Combination

function k_combination (lst , k) {
if (k === 0) {

return list ([]);
} else if (is_empty_list (lst)) {

return [];
} else {

const with_head =
map(other => pair(head(lst), other),

k_combination (tail(lst), k - 1));
const without_head = k_combination (tail(lst), k);

return append (with_head , without_head);
}

}

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 55 / 68

Recursion

Examples that we have already covered so far...
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change
Permutation/combination

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 56 / 68

Recursion

Congratulations!
You have finished the course from Department of Recursion, Faculty
of Abstraction, University of Wishful Thinking !

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 57 / 68

Recursion

Recursion in Google Search
Try to search for “recursion” in Google:

Thus...
Now, you know why “Google is always your best friend”, right?

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 58 / 68

Studio Group Problems

Let’s discuss them now.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 59 / 68

Studio Group Problems

Let’s work together!
We will use a realtime collaborative platform “SourceMD”, which
uses “CodiMD”, which in turn is based on “HackMD”.
For this week, click https://tinyurl.com/cs1101s-w6

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 60 / 68

https://tinyurl.com/cs1101s-w6

Studio Group Problems

Question 1
Write the function map using accumulate. In order to define your map
function in the Source, you need to give it a name different from the
pre-declared name map, for example map_.

Hint: the function body should have only one line.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 61 / 68

Studio Group Problems

Question 2
Write a function called remove_duplicates that takes in a list as its only
argument and returns a list with duplicate elements removed. The order of
the elements in the returned list does not matter.

Please provide two different implementations of remove_duplicates:
Use filter only
Use accumulate only

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 62 / 68

Studio Group Problems

Question 3
Write a function makeup_amount which takes as parameters the amount x
and a list l of all the coins available, and returns a list of lists, such that
each sub-list of the result contains a valid combination to make up x.

Notice:
l is a list of coins, not a list of kinds of coins. For instance, if there
are two 5’s in the list, that means we have two 5-cent coins.
A combination may appear more than once, since it may be using
different coins of the same denomination.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 63 / 68

Studio Group Problems

Question 4
Implement a function tree_accumulate that behaves like accumulate
but can also work on trees. You may want to use accumulate to
implement it.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 64 / 68

Studio Group Problems

Question 5
Implement a function accumulate_n similar to accumulate except that it
takes as its third argument a list of lists, which are all assumed to have the
same number of elements. It applies the designated accumulation function
to combine all the first elements of the sequences, all the second elements
of the sequences, and so on, and returns a list of the results.

For instance, if we have const lst = list(list(1, 2), list(3, 4),
list(5, 6)), the return value of accumulate_n((x, y) => x + y,
0, lst) is list(9, 12), where 9 = 1 + 3 + 5 and 12 = 2 + 4 + 6.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 65 / 68

Studio Group Problems

Question 6
Let’s use list to represent sets. Each element of the set appears exactly
once in its list representation, and the order does not matter. Write a
function subsets that takes a list as the only parameter, and returns a list
of lists, each representing a unique subset of the given set.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 66 / 68

End

The End

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 67 / 68

Copyright

Niu Yunpeng © 2017 - 2018. Under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

Appropriate credits MUST be given when sharing, copying or redistributing
this material in any medium or format. No use for commercial purposes is
allowed.

This work is mostly an original by Niu Yunpeng . It may either directly or
indirectly benefit from the previous work of Martin Henz, Cai Deshun. For
illustration purposes, some pictures in the public domain are used. Upon
request, detailed acknowledgments will be provided.

Niu Yunpeng CS1101S Studio Week 6 September 18, 2018 68 / 68

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://yunpengn.github.io/

	Identity & equality
	Review

	List processing
	From last week
	List library

	Tree processing
	Search

	One more thing about recursion
	Permutation
	Combination

