
Welcome

CS1101S Studio Session Week 7:
LEGO Programming, Sorting & Mid-term Review

Niu Yunpeng

niuyunpeng@u.nus.edu

October 2, 2018

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 1 / 52

Before We Start

Mission RoboWarriors (M7)
Robot grouping released in Week 6 Studio
Robot kit issued in Week 7 Studio
Robot mission assessment in Week 8 Studio
Robot contest in Week 9 Wednesday night
Robot kit returned in Week 10 Studio

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 2 / 52

Mid-Semester Feedback

What do you like about CS1101S Studio?
A lot of interesting content covered.
Main concepts in lecture are reviewed and summarized.
More examples in Studio slides.

What do you dislike about CS1101S Studio?
Too difficult and tedious.
Too rushed to cover everything in 2 hours.
Not enough time to go over every question in Studio Sheet.
Studio Sheet answer is not provided.
Hard to follow what the TA is saying sometimes.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 3 / 52

Mid-Semester Feedback

Responses from Yunpeng
Will continue to review concepts and cover more examples in Studio.
Not enough time: always the problem in CS1101S, let’s try to fix it
together (don’t be late, start on time).
Studio Sheet answer: forbidden by Prof Martin. Talk to him directly.
Don’t understand what I am saying: ask me to stop and repeat at
anytime. Don’t be shy.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 4 / 52

Overview

1 LEGO programming
History of OS and Linux
Using ev3dev
Robotics programming

2 Sorting
Algorithms so far
Improvements & more

3 Mid-term review
What we have learned
To prepare for the mid-term test

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 5 / 52

LEGO Programming

Operating system (OS)
Maybe you are familiar with these operating systems:

Windows
macOS
Android
iOS
...

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 6 / 52

LEGO Programming

Operating system (OS)
But what about them:

Unix
Linux
Ubuntu/Debian/CentOS...

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 7 / 52

LEGO Programming

Starting from Unix
Unix is a pioneer OS that was first developed in 1969 at at the Bell
Labs research center by Ken Thompson and Dennis Ritchie, also
called AT&T Unix.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 8 / 52

LEGO Programming

After that...
Many other OSs have been inspired by Unix philosophy:

a set of simple tools (to each perform a limited, well-defined function)
a unified file system (as the main means of communication)
a shell scripting and command language (to combine the tools to
perform complex workfows)
modular design.

These OSs are called Unix-like systems, which is a family of multi-
tasking, multi-user computer operating systems.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 9 / 52

LEGO Programming

Growing up fast
Nowadays, Unix-like OS is in fact almost everywhere.
You may still be not aware that macOS, Linux and Android are all
based on AT&T Unix and members of the Unix-like family.

Everywhere
Due to its high performance and reliability, more than 90% of the
super-computers around the world are using Unix.
Our SoC server, SunFire is using Solaris, a Unix-like OS developed by
Sun Microsystems.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 10 / 52

LEGO Programming

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 11 / 52

LEGO Programming

From Unix to Linux
Linux was developed by Linus Torvalds in 1991.
At that time, Linus was still an undergraduate student at University
of Helsinki. He was frustrated by the OS used at school then, called
Minix. So, he decided to develop a better one by himself.
If you found any system (like the printers) at SoC very hard to use,
you should know why the school makes it to be like that now.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 12 / 52

LEGO Programming

Linux’s history
However, the original Linux should be called Linux kernel because it
usually performs as a minimum setup instead of full installation.
Thus, Linux is usually packaged in a form known as Linux distribution
(or distro for short) for both desktop and server usage.
Some famous Linux distros are CentOS, Debian and Ubuntu.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 13 / 52

LEGO Programming

Your LEGO ev3 now
By copying the given image to the SD card, you install ev3dev for
your robot.
ev3dev is a variant of Debian (a famous Linux distro), which can run
on several kinds of LEGO robots.
Theoretically, you can do any legal Linux operation on ev3dev .

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 14 / 52

LEGO Programming

To access your ev3dev
Your ev3dev is not like your normal laptop OS. It is an embedded
system, without monitor, keyboard or mouse.
However, it does have CPU and memory. So, it can do any task like
your normal laptop. But, you need to access it in a different way.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 15 / 52

LEGO Programming

To access your ev3dev - use SSH
SSH is short for Secure Shell, a secured method to access from local
computer to a remote computer.
For Windows: use Putty/Pietty/Kitty, OpenSSH, Xshell, etc.
For mac and Linux: use system built-in Terminal.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 16 / 52

LEGO Programming

Common commands in Linux
cd <file_name>: changes to that selected directory;
cd ..: go back to the parent directory;
pwd: print the absolute path of the current directory;
ls: list all files and sub-directory in the current directory;
You may want to supply -a to include hidden files and -l to see the
long format (include permission, size, timestamp, etc).
rm <file_name>: remove the selected file;
chmod <code> <file_name>: change the selected file’s permission;
vim <file_name>: use vim to edit a file.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 17 / 52

LEGO Programming

Using vim in command-line
Vim is a simple but powerful text editor in all platforms;
Vim has two modes: command mode (where you can navigate and
manipulate the file, press <ESC> to enter) and insert mode (where you
edit the file, press <i> to enter));
To save and exit: enter command mode, press :wq<ENTER>;
You may want to modify .vimrc to change the vim setting (notice
that common settings of this file can be found online).

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 18 / 52

LEGO Programming

Robotics programming
Robotics programming is exciting because this may be the first time
that your program can really make something real move (not on the
monitor anymore).
However, this is not going to be easy. You need to consider more
factors.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 19 / 52

LEGO Programming

Advice
Remember your math. Try to do some accurate calculation;
Remember your physics. Gravity, friction, acceleration, ...;
Remember your programming. Harder to debug this time.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 20 / 52

LEGO Programming

A few hints
Do modular design: each part do independent work;
Develop your own “callback function”: keep doing checks for some
conditions, whenever true, the corresponding function will be called;
The power of the motor may change gradually as you rely on battery.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 21 / 52

LEGO Programming

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 22 / 52

Overview

1 LEGO programming
History of OS and Linux
Using ev3dev
Robotics programming

2 Sorting
Algorithms so far
Improvements & more

3 Mid-term review
What we have learned
To prepare for the mid-term test

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 23 / 52

Sorting

Sorting algorithms so far ...
Insertion sort
Selection sort
Merge sort
Quick sort

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 24 / 52

Sorting

Insertion sort

function insertion_sort (xs) {
if (is_empty_list (xs)) {

return xs;
} else {

return insert (head(xs), insertion_sort (tail(xs)));
}

}
function insert (x, xs) {

if (is_empty_list (xs)) {
return list(x);

} else if (x <= head(xs)) {
return pair(x, xs);

} else {
return pair(head(xs), insert (x, tail(xs)));

}
}

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 25 / 52

Sorting

Selection sort

function selection_sort (xs) {
if (is_empty_list (xs)) {

return xs;
} else {

const s = smallest (xs);
return pair(s, selection_sort (remove (s, xs)));

}
}

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 26 / 52

Sorting

Selection sort

function smallest (xs) {
function sm(x, ys) {

if (is_empty_list (ys)) {
return x;

} else if (x < head(ys)) {
return sm(x, tail(ys));

} else {
return sm(head(ys), tail(ys));

}
}

return sm(head(xs), tail(xs));
}

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 27 / 52

Sorting

Merge sort

function merge_sort (xs) {
if (is_empty_list (xs) || is_empty_list (tail(xs))) {

return xs;
} else {

const mid = middle (length (xs));
return merge(merge_sort (take(xs , mid)),

merge_sort (drop(xs , mid)));
}

}

function middle (n) {
return math_floor (n / 2);

}

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 28 / 52

Sorting

Merge sort

function merge(xs , ys) {
if (is_empty_list (xs)) {

return ys;
} else if (is_empty_list (ys)) {

return xs;
} else {

const x = head(xs);
const y = head(ys);

if (x < y) {
return pair(x, merge(tail(xs), ys));

} else {
return pair(y, merge(xs , tail(ys)));

}
}

}

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 29 / 52

Sorting

Merge sort

function take(xs , n) {
if (n === 0) {

return [];
} else {

return pair(head(xs), take(tail(xs), n - 1));
}

}

function drop(xs , n) {
if (n === 0) {

return xs;
} else {

return drop(tail(xs), n - 1);
}

}

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 30 / 52

Sorting

Quick sort

function quicksort (xs) {
// Implementation

}

function partition (xs , p) {
// Implementation

}

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 31 / 52

Sorting

More about quicksort ...
To optimize: an engineering task

Use dual-pivot quicksort (implemented in Java 8)
Switch to insertion sort when divided until size is small, say < 1000.

To avoid the worst case: select the pivot smartly
Select a random pivot?
Use paranoid quicksort?

To save space: use in-place partition routine
To be stable (when there are duplicates): 3-way partition

Two pass? One pass?
What if the size of dataset is too large?

We cannot even load all data required to be sorted into memory.
Use external sorting!

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 32 / 52

Sorting

More sorting algorithms in the future ...
Comparison-based sorting

Bubble sort, heap sort, ...
Non-comparison-based sorting

Radix sort, counting sort, bucket sort, ...

Lower bound ...
For comparison-based sorting: Ω(n · logn)

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 33 / 52

Overview

1 LEGO programming
History of OS and Linux
Using ev3dev
Robotics programming

2 Sorting
Algorithms so far
Improvements & more

3 Mid-term review
What we have learned
To prepare for the mid-term test

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 34 / 52

Mid-term Review

Revisit the CS1101S roadmap

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 35 / 52

Mid-term Review

Things we have covered so far...
Components of programming language
Wishful thinking/abstraction
Recursion/iteration
Higher-order programming
Pair/list/tree processing
Data structure design
...

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 36 / 52

Mid-term Review

Components of programming language
Primitives:
The smallest constituent unit of a programming language.
Combination:
Ways to put primitives together.
Abstraction:
The method to simplify the messy combinations.

To abstract data: use naming;
To abstract procedures: use functions.
Sometimes, naming and functions are combined together.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 37 / 52

Mid-term Review

Wishful thinking/abstraction
To make a good abstraction:

Modularity:
Separate multiple steps (and sub-steps).
Readability:
Easy for others to read and understand.
Reusability:
Provide a generic interface to be used commonly.
Maintainability:
Convenient to debug, refactor and deploy.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 38 / 52

Mid-term Review

Recursion/iteration
Iteration: the buttom-up approach;
Recursion: the top-down approach.

How to understand recursion?
Use substitution model .
Repeatedly replace a function call by its function body, in which the
formal parameters are replaced by the respective actual arguments.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 39 / 52

Mid-term Review

Recursive function
Any function that calls itself (directly or indirectly) is called a
recursive function.

To write recursive functions correctly
Base case(s)
Scale
Sub-problem(s)

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 40 / 52

Mid-term Review

Deferred operation
The operations that have to be suspended because they need to wait
for some other operations to finish first.
In order to suspend them, we need to remember them in the memory,
which is a waste of space.

Recursive & iterative process
Execution of a recursive function may give rise to either a recursive or
iterative process.
Recursive process: those with deferred operations.
Iterative process: those without deferred operations.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 41 / 52

Mid-term Review

Classical examples of recursion
Factorial
Square root
Power function
Fibonacci
Greatest common divisor (GCD)
Least common multiple (LCM)
Hanoi tower
Coin change
Permutation / combination
...

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 42 / 52

Mid-term Review

Higher-order programming
Why we can do higher-order programming:

Functions are also variables.
They are not special.
They just behave like normal variables.

To use higher-order programming:
Constants can be functions.
Parameters can be functions.
Return values can be functions.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 43 / 52

Mid-term Review

Pair/list/tree processing
Up to now, the list library supports different kinds of functions:

List builder: list, build_list, enum_list;
List getter: head, tail, list_ref, member, is_member;
List information: is_list, is_empty_list, length, equal;
List modifier: append, reverse, remove, remove_all, filter,
map, for_each;
List converter: accumulate, list_to_string.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 44 / 52

Mid-term Review

Data structure design
You should follow these principles:

Understand the requirement before doing the actual design;
Separate the interface from the implementation;
Compare the advantage and tradeoff;
Principle of last commitment.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 45 / 52

Mid-term Review

Two types of study
Subject-oriented: to learn the really useful stuff;
Examination-oriented: to help you get good grades.

Consequence
Subject-oriented: good for you (long-term goal);
Examination-oriented: good for your CAP (short-term goal).

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 46 / 52

Mid-term Review

How to choose between two types of study
During recess week and reading week: examination-oriented ;
Else: subject-oriented.

Suggestion
CAP is important that it should be part of your life.
However, it should not become all of your life.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 47 / 52

Mid-term Review

To prepare for an examination effectively
Read all the materials again;
Do as many PYPs (past year papers) as possible;
Summarize what you have learned;
Be relaxed.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 48 / 52

Mid-term Review

To prepare for CS1101S mid-term test
Do all the available PYPs carefully;
Read all lecture notes, recitation notes, studio notes again;
Do all studio group problems again;
Be familiar with the latest Source language library;
If you still have time, read the textbook SICP.

After these steps ...
Don’t worry anymore, you are ready for the midterm!

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 49 / 52

Good Luck

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 50 / 52

End

The End

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 51 / 52

Copyright

Niu Yunpeng © 2017 - 2018. Under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

Appropriate credits MUST be given when sharing, copying or redistributing
this material in any medium or format. No use for commercial purposes is
allowed.

This work is mostly an original by Niu Yunpeng . It may either directly or
indirectly benefit from the previous work of Martin Henz, Cai Deshun. For
illustration purposes, some pictures in the public domain are used. Upon
request, detailed acknowledgments will be provided.

Niu Yunpeng CS1101S Studio Week 7 October 2, 2018 52 / 52

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://yunpengn.github.io/

	LEGO programming
	History of OS and Linux
	Using ev3dev
	Robotics programming

	Sorting
	Algorithms so far
	Improvements & more

	Mid-term review
	What we have learned
	To prepare for the mid-term test

