
Welcome

CS1101S Studio Session Week 8:
Data Structure Design & Stateful Programming

Niu Yunpeng

niuyunpeng@u.nus.edu

October 9, 2018

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 1 / 36



Overview

1 Data structure design
Design principle
Examples

2 Stateful programming
Mutable data
Mutable data structure

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 2 / 36



Data Structure Design

Three steps to implement a program
In order to solve a problem using a program, you need:

Think of an appropriate algorithm;
Design a suitable data structure;
Do the coding (with good coding style).

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 3 / 36



Data Structure Design

Thus...
The first three CS modules are:

CS1101S Programming Methodology
CS2030 Programming Methodology II
CS2040 Data Structures and Algorithms

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 4 / 36



Data Structure Design

Data structure
In computer science, a data structure is a particular way of organizing
data in a computer so that it can be used efficiently.

Algorithm
In computer science, an algorithm is a self-contained sequence of
actions to be performed.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 5 / 36



Data Structure Design

Data & information
Data is the storage of information.
Two kinds of information: states & procedures.

Data structure & algorithm
To store states efficiently: use data structure;
To perform procedures efficiently: use algorithm.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 6 / 36



Data Structure Design

Design principle of data structure
Understand the requirement before doing the actual design;
Separate the interface from the implementation;
Compare the advantage and tradeoff;
Principle of last commitment.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 7 / 36



Data Structure Design

1. Understand the requirement
Your data structure do not need to support everything. You only need
to implement what the users really need. Anything else should not be
considered.
There is no “bonus point”.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 8 / 36



Data Structure Design

2. Separate the interface from the implementation
You are free to choose how you are going to implement the data
structure, like choice of programming language, abstract data type
(ADT), etc.
However, the interface given to the users should always be the same
(and accorded with the convention).
In other words, users do not need to care about the implementation.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 9 / 36



Data Structure Design

3. Compare the advantage and tradeoff
You may have many choices available to implement the same data
structure (or the interface).
Usually, each of them has its own advantages and tradeoffs.
You should compare which operation is used more frequently so as to
make the final decision.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 10 / 36



Data Structure Design

4. Principle of last commitment
Whenever possible, delay decisions until you have enough information,
or until the choice becomes inevitable.
Make sure your implementation is as generic as possible.
Try to enhance program re-usability.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 11 / 36



Data Structure Design

Examples of data structure so far...
Coin change
Symbolic differentiation
Rational number
Complex number
Pair/list/tree
Set
...

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 12 / 36



Data Structure Design

Common pattern of these examples
Constructor
Accessor
Predicate
Printer
...

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 13 / 36



Data Structure Design

Advanced data structure & algorithm modules
CS3230 Design and Analysis of Algorithms
CS4234 Optimisation Algorithms
CS5234 Combinatorial and Graph Algorithms
CS5330 Randomized Algorithms
CS6234 Advanced Algorithms

Caution
Could be interesting (at least to some of you)
Need in-depth understanding

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 14 / 36



Overview

1 Data structure design
Design principle
Examples

2 Stateful programming
Mutable data
Mutable data structure

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 15 / 36



Stateful Programming

Immutable
A constant holds a value inside it.
const x = 1;

Cannot hold another value.

Mutable
A new value can be assigned to the same variable.
<variable_name> = <new_value>

let y = 2;

To change the value inside y = 3;

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 16 / 36



Stateful Programming

Before Week 8
Pure functional programming.
Substitution model.
Return value do not change if values of arguments are the same.

After Week 8
Stateful programming.
Environment model.
Return value may vary even if values of arguments are the same.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 17 / 36



Stateful Programming

The concept of memory allocation
When we define a variable, the interpreter will allocate a position in
memory (random access memory, RAM) randomly so that we can use
it any time we want.
The name is actually the reference to this position in memory.
Whenever we call the name, the interpreter will just look for the value
stored at that position in memory.

Understanding
A variable is like a changeable container.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 18 / 36



Stateful Programming

Why can we change the value of a variable?
Before, when we want to have a new value of a variable, we allocate a
new position in memory.
However, it is not necessary for us to do this at all (because this is in
fact a waste of space in memory).
We can just update the value stored at the original position. When
we call that name after that, the interpreter will still look up for the
same position and a new value will be found.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 19 / 36



Mutable Data Structure

Before today - immutable data structure
A collection of data into one object.
Data inside cannot be changed.
Constructor, accessor, predicate, printer, ...

After today - mutable data structure
A collection of data into one object.
Data inside can be changed.
Constructor, accessor (getter), mutator (setter), predicate, printer, ...

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 20 / 36



Mutable Data Structure

Mutable pair/list
set_head(pr, x): set the head of a pair to become x;
set_tail(pr, y): set the tail of a pair to become y.

Caution
Remember identity & equality;
Remember the concept of memory allocation.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 21 / 36



Mutable Data Structure

Things you can do for pair/list
Re-write some parts of the list library;

To make the functions more efficient with respect to time and/or space
Create a cycle in a list.

Your task today
Can you write a program to detect the number of cycles in a given list
(or return 0 if none)?

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 22 / 36



Mutable Data Structure

Mutable data structure
Linked list
Double-way linked list
Queue
Stack
Table
...

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 23 / 36



Mutable Data Structure

Linked list / double-way linked list 1
make_linked_list(): create an empty linked list;
get_first(lst): get the first node of the linked list;
get_last(lst): get the first node of the linked list;
get_next(node): get the next node in the linked list;
get_prev(node): get the last node in the linked list;
get_data(node): get the data stored in the current node.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 24 / 36



Mutable Data Structure

Linked list / double-way linked list 2
prepend(lst, x): add x to the front of the linked list;
append(lst, x): add x to the rear of the linked list;
add_before(node, x): add x before the node;
add_after(node, x): add x after the node;
remove_first(lst): delete the first node in the linked list;
remove_last(lst): delete the last node in the linked list;
delete(node): delete the selected node in the linkd list;
empty(lst): delete all items in the linked list;
is_empty_linked_list(lst): check if a linked list is empty.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 25 / 36



Mutable Data Structure

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 26 / 36



Mutable Data Structure

Queue - first in first out (FIFO)
make_queue(): create an empty queue;
enqueue(queue, x): add x to the end of the queue;
dequeue(queue): delete the first item of the queue;
peek(queue): retrieve the value the first item of the queue;
empty(queue): delete all items in the queue;
is_empty_queue(queue): check if a queue is empty.

Notice
dequeue(queue) and peek(queue) will raise an error if the queue is
empty.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 27 / 36



Mutable Data Structure

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 28 / 36



Mutable Data Structure

Stack - first in last out (FILO)
make_stack(): create an empty stack;
push(stack, x): add x on the top of the stack;
pop(stack): delete the first item on the top of the stack;
peek(stack): retrieve the first value on the top of the stack;
empty(stack): delete all items in the stack;
is_empty_stack(stack): check if a stack is empty.

Notice
pop(stack) and peek(stack) will raise an error if the stack is
empty.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 29 / 36



Mutable Data Structure

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 30 / 36



Mutable Data Structure

Table
make_table(): create an empty table;
contains(key, table): check if the table contains this key;
put(key, value, table): insert a new entry to the table;
lookup(key, table): return the value corresponding to the
specified key in the table, or undefined if the key is not found;
empty(table): delete all entries in the stack;
is_empty_table(table): check if a table is empty.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 31 / 36



Mutable Data Structure

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 32 / 36



Mutable Data Structure

Usage of mutable data structure
Stack:

The interpreter uses stack to implement recursion.
Table:

The binding between names and values in a frame is a table;
Later, we will use table to implement memoization.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 33 / 36



Robot Mission Demo

Let’s do it now.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 34 / 36



End

The End

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 35 / 36



Copyright

Niu Yunpeng © 2017 - 2018. Under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

Appropriate credits MUST be given when sharing, copying or redistributing
this material in any medium or format. No use for commercial purposes is
allowed.

This work is mostly an original by Niu Yunpeng . It may either directly or
indirectly benefit from the previous work of Martin Henz, Cai Deshun. For
illustration purposes, some pictures in the public domain are used. Upon
request, detailed acknowledgments will be provided.

Niu Yunpeng CS1101S Studio Week 8 October 9, 2018 36 / 36

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://yunpengn.github.io/

	Data structure design
	Design principle
	Examples

	Stateful programming
	Mutable data
	Mutable data structure


