
Welcome

CS1101S Studio Session Week 10:
Iteration & Memoization

Niu Yunpeng

niuyunpeng@u.nus.edu

October 23, 2018

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 1 / 48

Overview

1 Iteration
Why using iteration?
Search with iteration
Sort with iteration

2 Memoization
Inspiration
To use memoization
Memoization & tabulation

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 2 / 48

Iteration

Array is better than list ...
Accessing an element in array arr[n] needs O(1) time.
Accessing an element in list list_ref(lst, n) needs O(n) time.

But, list_ref can be O(1) as well, if you are accessing the first
element.

Then ...
We have been using recrusion & list so far to solve problems because

We access the elements in a list in the incremental order. We often
only need O(1) time.

However, in the more general case, array is more flexible.

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 3 / 48

Iterative Search

Linear search

// Returns true if the target if found in the array.
function linear_search (a, v) {

const len = array_length (a); let i = 0;
while (i < len && a[i] !== v) {

i = i + 1;
}
return i < len;

}

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 4 / 48

Iterative Search

Binary search

function binary_search (a, v) {
function search (low , high) {

if (low > high) {
return false;

} else {
const mid = math_floor ((low + high) / 2);

return v === a[mid] || (
v < a[mid] ? search (low , mid - 1)

: search (mid + 1, high));
}

}

return search (0, array_length (a) - 1);
}

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 5 / 48

Iterative Sort

Selection sort

function selection_sort (A) {
const len = array_length (A);

for (let i = 0; i < len - 1; i = i + 1) {
let j_min = i;
for (let j = i + 1; j < len; j = j + 1) {

if (A[j] < A[j_min]) {
j_min = j;

} else {}
}

if (j_min !== i) {
swap(A, i, j_min);

} else {}
}

}

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 6 / 48

Iterative Sort

Insertion sort

function insertion_sort (A) {
const len = array_length (A);

for (let i = 1; i < len; i = i + 1) {
let j = i - 1;

while (j >= 0 && A[j] > A[j + 1]) {
swap(A, j, j + 1);
j = j - 1;

}
}

}

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 7 / 48

Iterative Sort

Insertion sort 2

function insertion_sort2 (A) {
const len = array_length (A);

for (let i = 1; i < len; i = i + 1) {
let j = i - 1;

while (j >= 0 && A[j] > A[j + 1]) {
swap(A, j, j + 1);
j = j - 1;

}
}

}

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 8 / 48

Iterative Sort

Merge

function merge(A, low , mid , high) {
const B = [];
let right = mid + 1;
let Bidx = 0;

while (left <= mid && right <= high) {
if (A[left] <= A[right]) {

B[Bidx] = A[left];
left = left + 1;

} else {
B[Bidx] = A[right];
right = right + 1;

}
Bidx = Bidx + 1;

}
...

}

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 9 / 48

Iterative Sort

Merge (continued)

function merge(A, low , mid , high) {
...
while (left <= mid) {

B[Bidx] = A[left];
Bidx = Bidx + 1;
left = left + 1;

}
while (right <= high) {

B[Bidx] = A[right];
Bidx = Bidx + 1;
right = right + 1;

}
for (let k = 0; k < high - low + 1; k = k + 1) {

A[low + k] = B[k];
}

}

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 10 / 48

Iterative Sort

Merge sort

function merge_sort (A) {
merge_sort_helper (A, 0, array_length (A) - 1);

}

function merge_sort_helper (A, low , high) {
if (low < high) {

const mid = math_floor ((low + high) / 2);
merge_sort_helper (A, low , mid);
merge_sort_helper (A, mid + 1, high);
merge(A, low , mid , high);

} else {}
}

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 11 / 48

Overview

1 Iteration
Why using iteration?
Search with iteration
Sort with iteration

2 Memoization
Inspiration
To use memoization
Memoization & tabulation

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 12 / 48

Memoization

Inspiration from Fibonacci

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 13 / 48

Memoization

Why is this version of Fibonacci bad?
Because it repeats solving the same sub-programs.
A waste of resources both in time and space.

Suggestion
Solve each sub-problem only once, and use the result repeatedly.

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 14 / 48

Memoization

A straightforward example

function slow_example (x) {
if (x > 100) {

return 1;
} else {

return slow_example (x + 3) + slow_example (x + 3);
}

}

slow_example (2);

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 15 / 48

Memoization

A straightforward example

function fast_example (x) {
if (x > 100) {

return 1;
} else {

return fast_example (x + 3) * 2;
}

}

fast_example (2);

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 16 / 48

Memoization

A straightforward principle
DRY (don’t repeat youself)

Significance
The DRY principle is the underlying reason for:

abstraction/wishful thinking
modular design
memoization/dynamic programming
...

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 17 / 48

Memoization

Memoization
How can we repeatedly use the results previously been computed?
Store them and access the data whenever in need.

Problem...
We need to store a lot of data.
We need a proper data structure.

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 18 / 48

Memoization

To choose a proper data structure
What to store: the results for every value of the function parameter,
like fibo(1), fibo(2), fibo(3), etc.
How to store: store in a linear data structure, like array or table.
When the function has 1 parameter, use 1D list/array.
When the function has 2 parameters, use 2D list/array.
...

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 19 / 48

Memoization

List or array?
List is better if we can store data incrementally, like 1, 2, 3, ...
If we cannot store them one by one in the incremental order, then it
will become meaningless when we access the data using
list_ref(lst, n).

Thus...
We should choose to use array.
After we solve a new problem, add arr[n + 1].

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 20 / 48

Memoization

memoize

function memoize (func) {
let arr = [];

return function (x) {
if (arr[x] !== undefined) {

return arr[x];
} else {

const result = func(x);
arr[x] = result ;

return result ;
}

};
}

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 21 / 48

Memoization

Problem here!
For each element in arr, its index is the parameter n, the value is the
return value func(n).
What if the value of the parameter is not a “non-negative integer”?

Although JavaScript allows everything to be used as index, that is bad
programming practice. It will make your program not intuitive anymore
as well. We need a layer of abstraction.

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 22 / 48

Memoization

Solution
Create an abstract data structure, called table or dictionary.
It has a lot of entries, just like array.

Each entry has a key and a value, just like array.
In fact, it should even be implemented using array!

The only difference: keys do not have to be non-negative integers!

Caution
Later you will see literal objects, which is like a built-in dictionary in
JavaScript.

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 23 / 48

Memoization

Example
The possible values of the parameter are -2, -1, 0, 1, 2, ...

Table will just use arr[n + 3] rather than arr[n]

The possible values are 0.5, 1, 1.5 ...
Table will just use arr[n * 2] rather than arr[n]

The possible values are ..., -3, -2, -1, 0, 1, 2, ...
How?

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 24 / 48

Memoization

Understanding
Table or dictionary is simply an improvement to array.

By using map to transform keys into non-negative integers.

What if the range of possible values do not have a pattern?
Hash function!

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 25 / 48

Memoization

To use table or dictionary
Use make_table() rather than let arr = []

Use contains() rather than XXX !== undefined

Use put() rather than arr[?] = XXX

Use lookup() rather than return arr[?]

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 26 / 48

Memoization

memoize

function memoize (func) {
const table = make_table ();

return function (x) {
if (contains (x, table)) {

return lookup (x, table);
} else {

const result = func(x);
put(x, result , table);

return result ;
}

};
}

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 27 / 48

Memoization

memoize_2d

function memoize_2d (func) {
const table = make_2d_table ();

return function (x, y) {
if (contains (x, y, table)) {

return lookup (x, y, table);
} else {

const result = func(x, y);
put(x, y, result , table);

return result ;
}

};
}

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 28 / 48

Memoization

A few examples using memoization
Fibonacci
k-combination
coin_change
...

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 29 / 48

Memoization

Fibonacci

function fibo(n) {
if (n <= 1) {

return n;
} else {

return fibo(n - 1) + fibo(n - 2);
}

}

Think about it...
Time/space complexity

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 30 / 48

Memoization

Use memoize to improve Fibonacci

const memo_fib = memoize (function (n) {
return n <= 1 ? n : memo_fib (n - 1) + memo_fib (n - 2);

});

Reason
Never solve the same sub-problem again.
DRY!

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 31 / 48

Memoization

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 32 / 48

Memoization

Another k-combination
No need to list all possible k-combinations.
We only want to count the number of k-combinations.
After that, we try to use memoize to improve it.

Thus...
We do not care about the actual values for n items in the list.
We use their indexes 1, 2, ..., n to represent them.

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 33 / 48

Memoization

k-combination

function k_combination (n, k) {
if (k > n) {

return 0;
} else if (k === 0) {

return 1;
} else {

return k_combination (n - 1, k - 1) +
k_combination (n - 1, k);

}
}

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 34 / 48

Memoization

Use memoize_2d to improve k-combination

const memo_k_combination = memoize_2d (function (n, k) {
if (k > n) {

return 0;
} else if (k === 0) {

return 1;
} else {

return memo_k_combination (n - 1, k - 1) +
memo_k_combination (n - 1, k);

}
});

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 35 / 48

Memoization

coin_change problem
Find the number of ways to make changes.
Still remember?

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 36 / 48

Memoization

coin_change problem

function coin_change (amount , kind) {
if (amount === 0) {

return 1;
} else if (amount < 0 || kind === 0) {

return 0;
} else {

return coin_change (amount , kind - 1) +
coin_change (amount - value(kind), kind);

}
}

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 37 / 48

Memoization

Use memoize_2d to improve coin_change

const memo_coin_change = memoize_2d (function (amount , kind)
{
if (amount === 0) {

return 1;
} else if (amound < 0 || kind === 0) {

return 0;
} else {

return memo_coin_change (amount , kind - 1) +
memo_coin_change (amount - value(kind), kind);

}
});

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 38 / 48

Memoization

An interesting fact
“memoization” is a domain-specific word.
If you look it up in the dictionary, you cannot find it.
A similar word is “memoris(z)ation”. But we didn’t misspell it.
“memoization” is only used in Computer Science.

Domain-specific language (DSL)
In CS, DSL is actually a family of programming languages.
Google this term and you will find some interesting things.

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 39 / 48

Memoization

Review: two approaches
Iteration: the buttom-up approach;
Recursion: the top-down approach.

Recall: why do we use array/table rather than list?
We may not traverse in the incremental order 1, 2, ..., n.
Using list_ref(lst, n) is meaningless.

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 40 / 48

Memoization

Think about memoization again
Is it the buttom-up approach or top-down approach?

Look at it...

const memo_fib = memoize (function (n) {
return n <= 1 ? n : memo_fib (n - 1) + memo_fib (n - 2);

});

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 41 / 48

Memoization

Memoization & tabulation
Memoization: top-down approach;
Tabulation: buttom-up approach.

Data structure
Memoization: table;
Tabulation: table or list (array).

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 42 / 48

Memoization

To use tabulation
To use tabulation, we will start from the smallest sub-problems.
Then, we will solve larger and larger sub-problems until the whole
problem has been solved.

Example
If we use tabulation for Fibonacci, we will solve sub-problems in the
incremental order, like fibo(1), fibo(2), fibo(3), ...
Due to the incremental order, we can also use list.

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 43 / 48

Memoization

Practical usage of memoization/tabulation
Essentially, they are just “cache”.

CPU cache
SQL execution plan caching
Redis LRU/LFU (least recently/frequently used) cache

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 44 / 48

Memoization

Dynamic programming
Dynamic programming (DP) is a technique for solving problems
recursively and is applicable when the computations of the
subproblems overlap.
Memoization and tabulation are two approaches for DP.

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 45 / 48

Studio Group Problems

Let’s discuss them now.

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 46 / 48

End

The End

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 47 / 48

Copyright

Niu Yunpeng © 2017 - 2018. Under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

Appropriate credits MUST be given when sharing, copying or redistributing
this material in any medium or format. No use for commercial purposes is
allowed.

This work is mostly an original by Niu Yunpeng . It may either directly or
indirectly benefit from the previous work of Martin Henz, Cai Deshun. For
illustration purposes, some pictures in the public domain are used. Upon
request, detailed acknowledgments will be provided.

Niu Yunpeng CS1101S Studio Week 10 October 23, 2018 48 / 48

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://yunpengn.github.io/

	Iteration
	Why using iteration?
	Search with iteration
	Sort with iteration

	Memoization
	Inspiration
	To use memoization
	Memoization & tabulation

