
Welcome

CS1101S Studio Session Week 11:
Stream

Niu Yunpeng

niuyunpeng@u.nus.edu

October 30, 2018

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 1 / 27

Overview

1 Lazy evaluation
Computational model
Function application

2 Stream
Delayed evaluation
Stream programming

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 2 / 27

Lazy Evaluation

Computational model
Computational model is a useful guideline for us to understand how
the interpreter works.
Computational model may vary depending on programming language
and the runtime system used.
In CS1101S, we introduce two computational models: substitution
model and environment model.

What to expect
In the coming weeks, these two models will still be valid.

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 3 / 27

Lazy Evaluation

Substitution model
For stateless programming only :

Evaluate all actual arguments;
Replace all formal parameters with their actual arguments;
Apply each statement in the function body (and get the return value);
Repeat the first 3 steps until done.

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 4 / 27

Lazy Evaluation

Environment model
For stateful programming:

Each frame contains a series of bindings of names and values.
The value of a variable depends on its environment, a sequence of
frames up to the global frame.
Each function call will create a new frame and extend its enclosing
environment.

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 5 / 27

Lazy Evaluation

Function in JavaScript
Function in JavaScript is a first-class citizen (object).
They have a call method.
The call method is triggered when this function is applied.

Function application
When a function is applied, “this” is prepanded to the list of
parameters.

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 6 / 27

Lazy Evaluation

What does “evaluation” mean?
JavaScript is a scripting language.
The interpreter will only evaluate line-by-line sequentially.
Thus, the value of a JavaScript program is always the value of the
last statement (the last line).

Notice
In other words, the other statements (except for the last one) do not
affect the overall value of the program.
However, they may have “side effects”.

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 7 / 27

Lazy Evaluation

Function value & return value
A function itself already represents a value, of “function” type.
The return value of a function application is the value of the last
statement, which is the return statement. It may be of “number”,
“boolean”, “string”, “function” type.

Thus...
Function evaluation: evaluates one statement (the function object
itself);
Function application: evaluates all statements in the function body.

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 8 / 27

Lazy Evaluation

Exercise
In the following slides, you are going to see a few short programs.
Also, you will see a single line of comment.
Identify the value of x at the point of that comment.
Notice: You may want to draw environment model diagram.

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 9 / 27

Lazy Evaluation

Exercise 1

let x = 0;

function foo () {
x = x + 1;

}

function bar(func) {
// Here
return func;

}

bar(foo ());

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 10 / 27

Lazy Evaluation

Exercise 2

let x = 0;

function foo () {
x = x + 1;

}

function bar(func) {
// Here
return func;

}

bar(foo);

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 11 / 27

Lazy Evaluation

Exercise 3

let x = 0;

function foo () {
x = x + 1;

}

function bar(func) {
return func;

}

bar(foo)();
// Here

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 12 / 27

Overview

1 Lazy evaluation
Computational model
Function application

2 Stream
Delayed evaluation
Stream programming

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 13 / 27

Stream

Inspiration
In order to generate an infinite list of {1, 1, 1, ...}, you are given the two
approaches as follows:
// 1st approach
const ones = pair (1, ones);

// 2nd approach
const ones = pair (1, () => ones);

Think about it...
Which one is correct?
What is the output?

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 14 / 27

Stream

The 1st approach
It will give rize to an error.
The right side of an assignment statement will be evaluated before
the actual assignment is done.
The pair function will evaluate the values of its arguments before the
pair is constructed.
Thus, the tail of the pair has not been defined yet.

Notice
The following also does not work
const ones = pair (1, (() => ones)());

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 15 / 27

Stream

The 2nd approach
There will not be any error.
However, it is in fact not correct.
It is not precise to say it is a list of {1, 1, 1, ...}.
It is in fact a stream of {1, 1, 1, ...}.

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 16 / 27

Stream

JavaScript is not “lazy”
For any assignment statement in JavaScript, the right side will always
be evaluated before the actual assignment is done.
Variable declaration and binding of function parameters to the values
of actual arguments behave similar to assignment statements.
Applicative order of reduction.

Delayed lazy evaluation
Unlike some other languages like Haskell, JavaScript is not lazy.
Thus, to delay the evaluation of some statements, we have to wrap
them into a function.

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 17 / 27

Stream

Stream
A stream is either an empty list, or a pair whose tail is a nullary
function that returns a stream.
A nullary function is a funcion with no parameters.

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 18 / 27

Stream

Revisit list library
Up to now, the list library supports different kinds of functions:

List builder: list, build_list, enum_list;
List getter: head, tail, list_ref, member, is_member;
List information: is_list, is_empty_list, length, equal;
List modifier: append, reverse, remove, remove_all, filter,
map, for_each;
List converter: accumulate, list_to_string.

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 19 / 27

Stream

Stream library
Up to now, the stream library supports different kinds of functions:

Stream builder: stream, build_stream, enum_stream,
integers_from;
Stream getter: stream_tail, stream_ref, stream_member;
List information: is_stream, stream_length;
List modifier: stream_append, stream_reverse, stream_map,
stream_for_each, stream_remove, stream_remove_all,
stream_filter;
List converter: list_to_stream, stream_to_list, eval_stream.

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 20 / 27

Stream

Apart from them - interleave

function interleave (s1 , s2) {
if (is_empty_list (s1)) {

return s2;
} else {

return pair(head(s1),
() => interleave (s2 , stream_tail (s1)));

}
}

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 21 / 27

Stream

Use interleave - pairs

function pairs(s, t) {
return pair(pair(head(s), head(t)), function () {

const part1 = stream_map (x => pair(head(s), x),
stream_tail (t));

const part2 = pairs(stream_tail (s), stream_tail (t));

return interleave (part1 , part2);
});

}

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 22 / 27

Stream

To become good at stream
Do not forget the pair/list;
Understand higher-order programming well;
Always do wishful thinking!

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 23 / 27

Stream

Try your best...

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 24 / 27

Studio Group Problems

Let’s discuss them now.

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 25 / 27

End

The End

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 26 / 27

Copyright

Niu Yunpeng © 2017 - 2018. Under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

Appropriate credits MUST be given when sharing, copying or redistributing
this material in any medium or format. No use for commercial purposes is
allowed.

This work is mostly an original by Niu Yunpeng . It may either directly or
indirectly benefit from the previous work of Martin Henz, Cai Deshun. For
illustration purposes, some pictures in the public domain are used. Upon
request, detailed acknowledgments will be provided.

Niu Yunpeng CS1101S Studio Week 11 October 30, 2018 27 / 27

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://yunpengn.github.io/

	Lazy evaluation
	Computational model
	Function application

	Stream
	Delayed evaluation
	Stream programming

