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Lazy Evaluation

Computational model
Computational model is a useful guideline for us to understand how
the interpreter works.
Computational model may vary depending on programming language
and the runtime system used.
In CS1101S, we introduce two computational models: substitution
model and environment model.

What to expect
In the coming weeks, these two models will still be valid.
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Lazy Evaluation

Substitution model
For stateless programming only :

Evaluate all actual arguments;
Replace all formal parameters with their actual arguments;
Apply each statement in the function body (and get the return value);
Repeat the first 3 steps until done.
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Lazy Evaluation

Environment model
For stateful programming:

Each frame contains a series of bindings of names and values.
The value of a variable depends on its environment, a sequence of
frames up to the global frame.
Each function call will create a new frame and extend its enclosing
environment.
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Lazy Evaluation

Function in JavaScript
Function in JavaScript is a first-class citizen (object).
They have a call method.
The call method is triggered when this function is applied.

Function application
When a function is applied, “this” is prepanded to the list of
parameters.
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Lazy Evaluation

What does “evaluation” mean?
JavaScript is a scripting language.
The interpreter will only evaluate line-by-line sequentially.
Thus, the value of a JavaScript program is always the value of the
last statement (the last line).

Notice
In other words, the other statements (except for the last one) do not
affect the overall value of the program.
However, they may have “side effects”.
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Lazy Evaluation

Function value & return value
A function itself already represents a value, of “function” type.
The return value of a function application is the value of the last
statement, which is the return statement. It may be of “number”,
“boolean”, “string”, “function” type.

Thus...
Function evaluation: evaluates one statement (the function object
itself);
Function application: evaluates all statements in the function body.
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Lazy Evaluation

Exercise
In the following slides, you are going to see a few short programs.
Also, you will see a single line of comment.
Identify the value of x at the point of that comment.
Notice: You may want to draw environment model diagram.
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Lazy Evaluation

Exercise 1

let x = 0;

function foo () {
x = x + 1;

}

function bar(func) {
// Here
return func;

}

bar(foo ());
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Lazy Evaluation

Exercise 2

let x = 0;

function foo () {
x = x + 1;

}

function bar(func) {
// Here
return func;

}

bar(foo);
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Lazy Evaluation

Exercise 3

let x = 0;

function foo () {
x = x + 1;

}

function bar(func) {
return func;

}

bar(foo)();
// Here
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Stream

Inspiration
In order to generate an infinite list of {1, 1, 1, ...}, you are given the two
approaches as follows:
// 1st approach
const ones = pair (1, ones);

// 2nd approach
const ones = pair (1, () => ones);

Think about it...
Which one is correct?
What is the output?
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Stream

The 1st approach
It will give rize to an error.
The right side of an assignment statement will be evaluated before
the actual assignment is done.
The pair function will evaluate the values of its arguments before the
pair is constructed.
Thus, the tail of the pair has not been defined yet.

Notice
The following also does not work
const ones = pair (1, (() => ones)());
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Stream

The 2nd approach
There will not be any error.
However, it is in fact not correct.
It is not precise to say it is a list of {1, 1, 1, ...}.
It is in fact a stream of {1, 1, 1, ...}.
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Stream

JavaScript is not “lazy”
For any assignment statement in JavaScript, the right side will always
be evaluated before the actual assignment is done.
Variable declaration and binding of function parameters to the values
of actual arguments behave similar to assignment statements.
Applicative order of reduction.

Delayed lazy evaluation
Unlike some other languages like Haskell, JavaScript is not lazy.
Thus, to delay the evaluation of some statements, we have to wrap
them into a function.
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Stream

Stream
A stream is either an empty list, or a pair whose tail is a nullary
function that returns a stream.
A nullary function is a funcion with no parameters.
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Stream

Revisit list library
Up to now, the list library supports different kinds of functions:

List builder: list, build_list, enum_list;
List getter: head, tail, list_ref, member, is_member;
List information: is_list, is_empty_list, length, equal;
List modifier: append, reverse, remove, remove_all, filter,
map, for_each;
List converter: accumulate, list_to_string.
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Stream

Stream library
Up to now, the stream library supports different kinds of functions:

Stream builder: stream, build_stream, enum_stream,
integers_from;
Stream getter: stream_tail, stream_ref, stream_member;
List information: is_stream, stream_length;
List modifier: stream_append, stream_reverse, stream_map,
stream_for_each, stream_remove, stream_remove_all,
stream_filter;
List converter: list_to_stream, stream_to_list, eval_stream.
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Stream

Apart from them - interleave

function interleave (s1 , s2) {
if ( is_empty_list (s1)) {

return s2;
} else {

return pair(head(s1),
() => interleave (s2 , stream_tail (s1)));

}
}
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Stream

Use interleave - pairs

function pairs(s, t) {
return pair(pair(head(s), head(t)), function () {

const part1 = stream_map (x => pair(head(s), x),
stream_tail (t));

const part2 = pairs( stream_tail (s), stream_tail (t));

return interleave (part1 , part2);
});

}
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Stream

To become good at stream
Do not forget the pair/list;
Understand higher-order programming well;
Always do wishful thinking!
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Stream

Try your best...
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Studio Group Problems

Let’s discuss them now.
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End

The End
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