CG2023 Final Examination Cheat-sheet

1. Fourier series in trigonometric form:

$$
x_{p}(t)=a_{0}+2 \cdot \sum_{k=1}^{\infty}\left(a_{k} \cos \left(\frac{2 \pi k}{T_{p}}\right)+b_{k} \sin \left(\frac{2 \pi k}{T_{p}}\right)\right)
$$

$$
\text { where } a_{k}=\left(c_{-k}+c_{k}\right) / 2 \text { and } b_{k}=\left(c_{-k}-c_{k}\right) / 2
$$

2. Spectral properties of a real signal:
1) $x(t)$ is real, we have $X^{*}(f)=X(-f)$, which leads to

$$
|X(f)|=|X(-f)| \text { and } \angle \mathrm{X}(\mathrm{f})=-\angle \mathrm{X}(-\mathrm{f})
$$

2) $x(t)$ is real and even, we have $X(f)$ is also real and even

$$
X^{*}(f)=X(f) \text { and } X(f)=X(-f)
$$

3) $x(t)$ is real and odd, we have $X(f)$ is imaginary and odd

$$
X^{*}(f)=-X(f) \text { and } X(f)=-X(-f)
$$

3. Properties of the Dirac- δ function:

1) Symmetry: $\delta(t)=\delta(-t)$
2) Sampling: $x(t) \delta(t-\lambda)=x(\lambda) \delta(t-\lambda)$
3) Sifting: $\int_{-\infty}^{\infty} x(t) \delta(t-\lambda) d t=x(\lambda)$
4) Replication: $x(t) * \delta(t-\xi)=x(t-\xi)$
5) White spectrum: $\mathfrak{J}\{\delta(\mathrm{t})\}=\mathfrak{J}^{-1}\{\delta(t)\}=1$
4. Use Fourier transform on periodic signals:

$$
\begin{aligned}
& \qquad X_{p}(f)=\sum_{k=-\infty}^{\infty} c_{k} e^{j 2 \pi k f_{p} t}=\sum_{k=-\infty}^{\infty} c_{k} \cdot \delta\left(f-k f_{p}\right) \\
& \text { 5. Fourier transform of the generating function: }
\end{aligned}
$$

$$
\begin{aligned}
& x_{p}(t)=g(t) * \sum_{n} \delta\left(t-n T_{p}\right)=\sum_{n} g\left(t-n T_{p}\right) \\
\rightleftharpoons & X_{p}(f)=\sum_{k} f_{p} G\left(k f_{p}\right) \delta\left(f-k f_{p}\right) \text { thus } c_{k}=f_{p} G\left(k f_{p}\right)
\end{aligned}
$$

6. $D C$ value (or called average value):
1) Original definition: $c_{0}=\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{-\tau}^{\tau} x(t) d t=\frac{X(0)}{\infty}$.
2) For periodic signal: $c_{0}=\frac{1}{T_{p}} \int_{-0.5 T_{p}}^{0.5 T_{p}} x(t) d t$.
3) In the frequency domain: $\frac{X(0)}{\infty}=\frac{\int_{-\infty}^{\infty} x(t) d t}{\infty}=c_{0}$.
4) The DC value of a signal is K if $X(f)$ contains a $K \delta(f)$ term.
5) All bounded energy signals have zero $D C$ value.
6) All bounded periodic signals are power signals.
7. Energy \& energy spectral density:

$$
E=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty}|X(f)|^{2} d f=\int_{-\infty}^{\infty} E_{x}(f) d t
$$

8. Power \& power spectral density:

$$
P=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|x(t)|^{2} d t=\int_{-\infty}^{\infty} \lim _{T \rightarrow \infty} \frac{1}{2 T}\left|X_{T}(f)\right|^{2} d f=\int_{-\infty}^{\infty} P_{x}(f) d f
$$

Furthermore, for periodic signals, we have

$$
P_{x}(f)=\sum_{k}\left|c_{k}\right|^{2} \delta\left(f-k f_{p}\right) \text { and } P=\sum_{k}\left|c_{k}\right|^{2}
$$

9. Magnitude \& phase of a complex number:

1) Any complex number can be expressed as $X=a+\boldsymbol{j} b=|X| \cdot e^{\boldsymbol{j} \angle X}$, whose magnitude is $|X|=\sqrt{X \cdot X^{*}}=\sqrt{a^{2}+b^{2}}$, and whose phase can be written as $\angle X=\frac{\operatorname{Im}\{X\}}{\operatorname{Re}\{X\}}=\frac{b}{a}$.
2) In the form of $\frac{1}{a+j b}$, its magnitude is $\frac{1}{\sqrt{a^{2}+b^{2}}}$, and its phase is $-\tan ^{-1}\left(\frac{b}{a}\right)$.
10. Properties of an LTI (linear time-invariant) system:
1) Impulse response (in t-domain): $y(t)=x(t) * h(t)$.
2) Frequency response (in f-domain): $Y(f)=X(f) \cdot H(f)$.
3) With transfer function $\widetilde{H}(\boldsymbol{j} \omega)$, if input is $x(t)=A \cos (\omega t+\varphi)$, we have output $y(t)=A|\widetilde{H}(j \omega)| \cos (\omega t+\varphi+\angle \widetilde{H}(\boldsymbol{j} \omega))$.

11. Stability of an LTI system with poles and/or zeros:

1) BIBO stable: All poles lie on the left-half s-plane, i.e. $\operatorname{Re}[s]<0$.
2) Marginally stable: One or more poles lie on the $\boldsymbol{j} \omega$ axis, the else on the left-half s-plane.
3) Unstable: One or more holes on the right-half s-plane, or one or more repeated holes the $\boldsymbol{j} \omega$ axis

12. DC gain of a $N^{\text {th }}$-order LTI system:

1) If there are more differentiators, DC gain is $\widetilde{H}(0)=0$.
2) If there are more integrators, DC gain is $\widetilde{H}(0)=\infty$.
3) $D C$ gain should not be expressed in $d B$, although $d B$ is used for gain.
13. Asymptotic value of phase response:
1) High-frequency: $\lim _{\omega \rightarrow \infty} \angle \widetilde{H}(\boldsymbol{j} \omega)=[\#$ poles $-\#$ zeros $] \times\left(-90^{\circ}\right)$
2) Low-frequency: $\lim _{\omega \rightarrow 0} \angle \widetilde{H}(\boldsymbol{j} \omega)=$ [\#integrators - \#differentiators] $\times\left(-90^{\circ}\right)$
14. Asymptotic value of magnitude response:
1) High-frequency: $\lim _{\omega \rightarrow \infty}|\widetilde{H}(j \omega)|_{d B}=[\#$ poles $-\#$ zeros $] \times(-20 d B /$ decade $)$
2) Low-frequency: $\lim _{\omega \rightarrow \infty}\left|H^{\top}(j \omega)\right|_{d B}=[\#$ integrators $-\#$ differentiators $] \times(-20)$
3) Notice: The number of poles/zeros here includes the number of integrators/differentiators.

15. Resonance in $2^{\text {nd }}$-order systems

Given $\widetilde{H}(s)=\frac{K \omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}$, resonance happens when $\zeta<1 / \sqrt{2}$.

1) Resonant frequency: $\omega_{r}=\omega_{n} \sqrt{1-2 \zeta^{2}}$
2) Resonant peak: $M_{r}=\left|\widetilde{H}\left(j \omega_{r}\right)\right|=\frac{K}{2 \zeta \sqrt{1-\zeta^{2}}}$

16. Sampling below Nyquist rate for bandpass signals

1) Perfectly-overlapping images: $\boldsymbol{f}_{s}=\frac{2 f_{c}}{k}$, where $k=1,2, \ldots,\left|\frac{2 f_{c}}{B}\right|$.
2) Un-aliased spectral images: $\frac{2 f_{c}+B}{k+1} \leq \boldsymbol{f}_{s} \leq \frac{2 f_{c}-B}{k}, k=1,2, \ldots,\left\lfloor\frac{2 f_{c}-B}{2 B}\right\rfloor$.
3) The above two are only possible when $\boldsymbol{f}_{\boldsymbol{c}} \geq \boldsymbol{B}$.
4) Notice: for perfectly-overlapping images, a division-by-2 is necessary on the reconstruction filter.

17. Drawing of straight-line Bode plots:

1) Constant $\widetilde{H}(s)=K_{d c}$:

2) L cascaded integrators with combined gain $\widetilde{H}(s)=K_{i} / s^{L}$:

3) L cascaded differentiators with combined gain $\widetilde{H}(s)=K_{d} \cdot s^{L}$:

4) Pole factor $\widetilde{H}(s)=\frac{1}{s / p_{n}+1}$ with $\widetilde{H}(0)=1$:

5) Zero factor $\widetilde{H}(s)=\frac{s}{z_{m}}+1$ with $\widetilde{H}(0)=1$:

6) $2^{\text {nd }}$-order factor $\widetilde{H}(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}$ with $\widetilde{H}(0)=1$:
a) When $\zeta>1$ (over-damped), treat as two cascaded pole factors;
b) When $\zeta=1$ (critical-damped), treat as two repeated pole factors;
c) When $\zeta<1$ (under-damped), approximate as $\zeta=1$.

For $2^{\text {nd }}$ and $3^{\text {rd }}$ case, draw the straight-line Bode plot as follows:

