CS1231 Discrete Structures (AY2016/2017 Semester 1)

Definitions, Theorem and Propositions

0. Basic concept

Theorem	A theorem refers to a statement that is known to be true because it has been proved.
Corollary	A corollary is a statement whose truth can be immediately deduced from a theorem that
	has already been proved.

1. Number Theory

Definition	An integer <i>n</i> is even if, and only if, <i>n</i> equals twice some integer. An integer <i>n</i> is
1.6.1	odd if, and only if, <i>n</i> equals twice some integer plus 1.
	Symbolically, if <i>n</i> is an integer, then
	<i>n</i> is even $\Leftrightarrow \exists$ an integer <i>k</i> such that $n = 2k$.
	<i>n</i> is odd $\Leftrightarrow \exists$ an integer <i>k</i> such that $n = 2k + 1$.
Theorem 4.1.1	The sum of any two even integers is even.
(Epp)	
Definition	An integer <i>n</i> is prime if, and only if, $n > 1$ and for all positive integers <i>r</i> and <i>s</i> , if <i>n</i>
4.2.1	= rs, then either r or s equals n. An integer n is composite if, and only if, $n > 1$ and $n = rs$ for some integers r and s with $1 \le r \le n$ and $1 \le s \le n$
	In symbols:
	<i>n</i> is prime $\Leftrightarrow \forall$ positive integers <i>r</i> and <i>s</i> , if <i>n</i> = <i>rs</i> then either <i>r</i> = 1 and <i>s</i> = <i>n</i> or
	r = n and $s = 1$.
	<i>n</i> is composite $\Leftrightarrow \exists$ positive integers <i>r</i> and <i>s</i> such that $n = rs$ and $1 < r < n$ and
	1 < s < n.
Theorem L4.2	Every integer $n > 1$ is either prime or composite.
P8	
Proposition	For any two primes p and q , if $p q$ then $p = q$.
4.2.2	
Theorem 4.2.3	If p is a prime and x_1, x_2, \ldots, x_n , are any integers such that: $p \mid x_1x_2 \ldots x_n$, then p
	x_i for some x_i ($1 < i < n$).
Definition	A real number r is rational if, and only if, it can be expressed as a quotient of two
P163 (Epp)	integers with a nonzero denominator. A real number that is not rational is
	irrational. More formally, if r is a real number, then r is rational $\Leftrightarrow \exists$ integers a
T I 101	and b such that $r = a b$ and $b \neq 0$.
Theorem 4.2.1	Every integer is a rational number.
(Epp)	
Theorem 4.2.2	The sum of any two rational numbers is rational.
(Epp)	
Corollary 4.2.3	The double of a rational number is rational.
(Epp) Definition	
Definition	If y and done integers and $d \neq 0$ then y is divisible by difficult only if y equals d
121	If <i>n</i> and <i>d</i> are integers and $d \neq 0$ then <i>n</i> is divisible by <i>d</i> if, and only if, <i>n</i> equals <i>d</i> times some integer. Instead of " <i>n</i> is divisible by <i>d</i> " we can say that <i>n</i> is a multiple
1.3.1	If <i>n</i> and <i>d</i> are integers and $d \neq 0$ then <i>n</i> is divisible by <i>d</i> if, and only if, <i>n</i> equals <i>d</i> times some integer. Instead of " <i>n</i> is divisible by <i>d</i> ," we can say that <i>n</i> is a multiple of <i>d</i> or <i>d</i> is a factor of <i>n</i> or <i>d</i> is a divisor of <i>n</i> or <i>d</i> divides <i>n</i> .
1.3.1	If <i>n</i> and <i>d</i> are integers and $d \neq 0$ then <i>n</i> is divisible by <i>d</i> if, and only if, <i>n</i> equals <i>d</i> times some integer. Instead of " <i>n</i> is divisible by <i>d</i> ," we can say that <i>n</i> is a multiple of <i>d</i> , or <i>d</i> is a factor of <i>n</i> , or <i>d</i> is a divisor of <i>n</i> , or <i>d</i> divides <i>n</i> . The notation $d \mid n$ is read " <i>d</i> divides <i>n</i> " Symbolically, if <i>n</i> and <i>d</i> are integers and <i>d</i>
1.3.1	If <i>n</i> and <i>d</i> are integers and $d \neq 0$ then <i>n</i> is divisible by <i>d</i> if, and only if, <i>n</i> equals <i>d</i> times some integer. Instead of " <i>n</i> is divisible by <i>d</i> ," we can say that <i>n</i> is a multiple of <i>d</i> , or <i>d</i> is a factor of <i>n</i> , or <i>d</i> is a divisor of <i>n</i> , or <i>d</i> divides <i>n</i> . The notation $\mathbf{d} \mid \mathbf{n}$ is read " <i>d</i> divides <i>n</i> ." Symbolically, if <i>n</i> and <i>d</i> are integers and $d \neq 0$: $d \mid n \Leftrightarrow \exists$ an integer <i>k</i> such that $n = dk$
1.3.1	If <i>n</i> and <i>d</i> are integers and $d \neq 0$ then <i>n</i> is divisible by <i>d</i> if, and only if, <i>n</i> equals <i>d</i> times some integer. Instead of " <i>n</i> is divisible by <i>d</i> ," we can say that <i>n</i> is a multiple of <i>d</i> , or <i>d</i> is a factor of <i>n</i> , or <i>d</i> is a divisor of <i>n</i> , or <i>d</i> divides <i>n</i> . The notation d n is read " <i>d</i> divides <i>n</i> ." Symbolically, if <i>n</i> and <i>d</i> are integers and $d \neq 0$: $d \mid n \Leftrightarrow \exists$ an integer <i>k</i> such that $n = dk$.
1.3.1 Theorem 4.3.1 (Epp)	If <i>n</i> and <i>d</i> are integers and $d \neq 0$ then <i>n</i> is divisible by <i>d</i> if, and only if, <i>n</i> equals <i>d</i> times some integer. Instead of " <i>n</i> is divisible by <i>d</i> ," we can say that <i>n</i> is a multiple of <i>d</i> , or <i>d</i> is a factor of <i>n</i> , or <i>d</i> is a divisor of <i>n</i> , or <i>d</i> divides <i>n</i> . The notation d n is read " <i>d</i> divides <i>n</i> ." Symbolically, if <i>n</i> and <i>d</i> are integers and $d \neq 0$: $d \mid n \Leftrightarrow \exists$ an integer <i>k</i> such that $n = dk$. For all integers <i>a</i> and <i>b</i> , if <i>a</i> and <i>b</i> are positive and <i>a</i> divides <i>b</i> , then $a \leq b$.

Theorem 4 3 2	The only divisors of 1 are 1 and -1
(Epp)	
Theorem 4.3.3	For all integers a, b, and c, if a divides b and b divides c, then a divides c.
(Epp)	
Theorem 4.3.4	Any integer $n > 1$ is divisible by a prime number.
(Epp)	
Theorem 4.1.1	$\forall a, b, c \in Z, \text{ if } a \mid b \text{ and } a \mid c \text{ , then } \forall x, y \in Z, a \mid (bx + cy).$
Theorem 4.3.5	Given any integer $n > 1$, there exist a positive integer k, distinct prime numbers p_1 ,
(Epp)	$p_{2,,p_{k}}$, and positive integers $e_{1}, e_{2,,k_{k}}$ such that
	$\mathbf{n} = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$
	and any other expression for n as a product of prime numbers is identical to this
	except, perhaps, for the order in which the factors are written.
Definition	Given any integer $n > 1$, the standard factored form of n is an expression of the
P177 (Epp)	form
	$\mathbf{n} = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$
	where k is a positive integer; p_1, p_2, \ldots, p_k are prime numbers; e_1, e_2, \ldots, e_k are
	positive integers; and $p_1 < p_2 < \cdots < p_k$.
Theorem 4.4.1	Given any integer n and positive integer d , there exist unique integers q and r such
(Epp)	that $n = dq + r$ and $0 \le r < d$.
Definition	Given an integer <i>n</i> and a positive integer <i>d</i> ,
P181 (Epp)	n div d = the integer quotient obtained
	when n is divided by d , and
	$n \mod d$ = the non-negative integer remainder obtained
	when <i>n</i> is divided by <i>a</i> . Symbolically, if <i>n</i> and <i>d</i> are integers and $d > 0$, then
	Symbolically, if <i>n</i> and <i>u</i> are integers and $u > 0$, then $n \operatorname{div} d = a \operatorname{and} n \operatorname{mod} d = r \Leftrightarrow n = da + r$
	where a and r are integers and $0 \le r \le d$
Theorem 4.4.2	Any two consecutive integers have opposite parity.
(Epp)	
Theorem 4.4.3	The square of any odd integer has the form $8m + 1$ for some integer m.
(Epp)	
Definition	For any real number x, the absolute value of x, denoted $ x $, is defined as follows:
P187 (Epp)	(-x, x < 0)
	$ x = \{x, x > 0\}$
T 4 4 4	
Lemma 4.4.4	For all real numbers $r, - r \le r \le r $.
(Epp)	For all real numbers $r = r - r$
(Fpp)	For an real numbers r , $ r - r $.
Theorem 4 4.6	For all real numbers x and y, $ x + y \le x + y $
(Epp)	1 or all real half of f and f, pr + f = pr + f f
Theorem 4.6.1	There is no greatest integer.
(Epp)	
Theorem 4.6.2	There is no integer that is both even and odd.
(Epp)	
Theorem 4.6.3	The sum of any rational number and any irrational number is irrational.
(Epp)	
Proposition	For all integers <i>n</i> , if n^2 is even then <i>n</i> is even.

4.6.4 (Epp)	
Theorem 4.7.1	$\sqrt{2}$ is irrational
(Epp)	
Proposition	$1 + 3\sqrt{2}$ is irrational
4.7.2 (Epp)	
Proposition	
4.7.3 (Epp)	For any integer a and any prime number p, if $p \mid a$ then $p \nmid (a + 1)$.
Theorem 4.7.4	The set of prime numbers is infinite.
(Epp)	
Theorem 5.2.2	For all integers $n \ge 1$,
(Epp)	$1 + 2 + \cdots + n = n(n+1)/2.$
Theorem 5.2.3	For any real number r except 1, and any integer $n \ge 0$,
(Epp)	
	$\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}.$
Proposition 5.3.1 (Epp)	For all integers $n \ge 0$, $2^{2n} - 1$ is divisible by 3.
Proposition	For all integers $n \ge 3$, $2n + 1 < 2n$.
532 (Epp)	1 or all integers n = 3, 2n + 1 < 2n.
Theorem $5.4.1$	Given any positive integer n , n has a unique representation in the form
(Fnn)	$n = c_n \cdot 2^r + c_n \cdot 2^{r-1} + \cdots + c_2 \cdot 2^2 + c_1 \cdot 2 + c_0$
(Lpp)	where r is a nonnegative integer $c_r = 1$ and $c_i = 1$ or 0 for all $i = 0, 1, 2, \dots, r-1$
Definition	An integer h is said to be a lower bound for a set $V \subseteq T$ if $h \leq r$ for all $r \in V$
	All integer <i>b</i> is said to be a lower bound for a set $X \subseteq Z$ if $b \leq x$ for all $x \subseteq X$.
Theorem 132	If a non-empty set $S \subset Z$ has a lower bound, then S has a least element
Dort 1	If a non-empty set $5 \leq 2$ has a lower bound, then 5 has a least element.
Tall 1 Theorem 4.2.2	If a non-ampty set $S \subset Z$ has an upper bound, then S has a greatest element
Dort 2	If a non-empty set $S \subseteq Z$ has an upper bound, then S has a greatest element.
Proposition	If a get C of integers has a least element, then the least element is unique
	If a set 5 of integers has a least element, then the least element is unique.
Proposition	If a set S of integers has a greatest element, then the greatest element is unique
	If a set 5 of integers has a greatest element, then the greatest element is unique.
4.3.4 Theorem 4.4.1	Given any integer n and any positive integer d there exist unique integers q and r
1110010111 4.4.1	Given any integer <i>n</i> and any positive integer <i>u</i> , there exist unique integers <i>q</i> and <i>r</i> such that $n = da + r$ and $0 \le r \le d$
Definition	Such that $n = uq + r$ and $0 \le r < u$.
	Let u and b denoted $gad(a, b)$ is that integer d with the following properties:
4.3.1	and b, denoted $gcd(a, b)$, is that integer a with the following properties:
	1. <i>a</i> is a common divisor of both <i>a</i> and <i>b</i> . In other words, $a \mid a$ and $a \mid b$.
	2. For all integers c, if c is a common divisor of both a and b, then c is less than or
D :::	equal to d. In other words, for all integers c, if c a and c b, then $c \le d$.
4.5.2	For any integers a, b, not both zero, their gcd exists and is unique.
Lemma 4.8.1	If <i>r</i> is a positive integer, then $gcd(r,0) = r$.
(Epp)	
Lemma 4.8.2	If a and b are any integers not both zero, and if q and r are any integers such that a
(Epp)	= bq + r, then $gcd(a,b) = gcd(b,r)$.
Definition	An integer <i>d</i> is said to be a linear combination of integers <i>a</i> and <i>b</i> if, and only if,
P486 (Epp)	there exist integers s and t such that $as + bt = d$.

Theorem 4.5.2	Let a, b be integers, not both zero, and let $d = gcd(a, b)$. Then there exist integers x, y such that: $ar + by = d$
Theorem I 4 5	There are multiple solutions r y to the equation $ar + by = d$. Once a solution pair
P29	(r, y) is found additional pairs may be generated by $(r + kh/d) = ka/d$ where k
127	(x, y) is round, additional pairs may be generated by $(x + kb + u, y - ku + u)$, where k is any integer
Definition	Integers a and b are relatively prime if and only if $gcd(a, b) = 1$. Integers a_1, a_2
4 5 3 P488	a_2 a_3 are pairwise relatively prime if and only if $gcd(a; a_3) = 1$ for all integers
(Epp)	<i>i</i> and <i>j</i> with $1 \le i, j \le n$, and $i \ne j$.
Corollary 8.4.6	If a and b are relatively prime integers, then there exist integers s and t such that as
(Epp)	+ bt = 1.
Proposition	For any integers a, b, not both zero, if c is a common divisor of a and b, then c /
4.5.5	gcd(a, b).
Definition	The least common multiple of two nonzero integers a and b, denoted lcm(a, b), is
4.6.1	the positive integer c such that
	1. $a \mid c$ and $b \mid c$;
	2. for all positive integers <i>m</i> , if <i>a</i> <i>m</i> and <i>b</i> <i>m</i> , then $c \le m$.
Definition	Let <i>m</i> and <i>n</i> be integers and let <i>d</i> be a positive integer. We say that <i>m</i> is congruent
4.7.1	to <i>n</i> modulo <i>d</i> and write
	$m \equiv n \pmod{d}$
	if, and only if, $d \mid (m - n)$.
	Symbolically: $m \equiv n \pmod{d} \Leftrightarrow d \mid (m - n)$
Theorem 8.4.1	Let <i>a</i> , <i>b</i> , and <i>n</i> be any integers and suppose $n > 1$. The following statements are all
(Epp)	equivalent:
	1. $n (a - b);$
	2. $a \equiv b \pmod{n}$;
	3. $a = b + kn$ for some integer k;
	4. <i>a</i> and <i>b</i> have the same (nonnegative) remainder when divided by <i>n</i> ;
	$5. a \mod n = b \mod n.$
Theorem 8.4.3	Let a, b, c, d, and n be integers with $n > 1$, and suppose $a \equiv c \pmod{n}$ and $b \equiv d$
(Epp)	$(\mod n)$. Then
	$1. (a+b) \equiv (c+d) \pmod{n}$
	$2. (a-b) \equiv (c-d) \pmod{n}$
	3. $ab \equiv cd \pmod{n}$
	4. $am \equiv cm \pmod{n}$ for all integers <i>m</i> .
Corollary 8.4.4	Let <i>a</i> , <i>b</i> , and <i>n</i> be integers with $n > 1$. Then
(Epp)	$ab \equiv [(a \mod n)(b \mod n)] \pmod{n},$
	or, equivalently,
	$ab \mod n = [(a \mod n)(b \mod n)] \mod n.$
	In particular, if <i>m</i> is a positive integer, then
	$a^m \equiv \lfloor (a \bmod n)^m \rfloor \pmod{n}.$
Definition	For any integers a, n with $n > 1$, if an integer s is such that $as \equiv 1 \pmod{n}$, then s is
4.7.2	called the multiplicative inverse of <i>a</i> modulo <i>n</i> . We may write the inverse as a^{-1} .
	Because the commutative law still applies in modulo arithmetic, we also have $a^{-1}a$
	$\equiv 1 \pmod{n}.$
Theorem 4.7.3	For any integer a, its multiplicative inverse modulo n (where $n > 1$), a^{-1} , exists if,
	and only if, a and n are coprime.
Corollary 4.7.4	If $n = p$ is a prime number, then all integers a in the range $0 < a < p$ have
	multiplicative inverses modulo <i>p</i> .
Theorem 8.4.8	For all integers a, b, and c, if $gcd(a, c) = 1$ and $a \mid bc$, then $a \mid b$.
(Epp)	

Niu Yunpeng

Theorem 8.4.9	For all integers <i>a</i> , <i>b</i> , <i>c</i> , and <i>n</i> with $n > 1$, if $gcd(c, n) = 1$ and $ac \equiv bc \pmod{n}$, then <i>a</i>
(Epp)	$\equiv b \pmod{n}$.
Theorem	If p is any prime number and a is any integer such that $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$.
8.4.10 (Epp)	

2. Proof Strategy

Proof of existence by	A statement in the form $\exists x \in D$ such that $Q(x)$ is true if, and only if, $Q(x)$
construction	is true for at least one x in D.
Proof of existence by	It shows either (a) that the existence of a value of x that makes $Q(x)$ true is
non-construction	guaranteed by an axiom or a previously proved theorem or (b) that the
	assumption that there is no such x leads to a contradiction.
Disproof by	To disprove a statement of the form " $\forall x \in D$, if $P(x)$ then $Q(x)$," find a
counter-example	value of x in D for which the hypothesis $P(x)$ is true and the conclusion
	Q(x) is false. Such an x is called a counterexample.
Proof by exhaustion	To elaborate that every possible case of this statement is true.
Proof by Generalizing	To show that every element of a set satisfies a certain property, suppose x is
from Generic	a particular but arbitrarily chosen element of the set, and show that x
Particular	satisfies the property.
Method of Direct	1. Express the statement to be proved in the form " $\forall x \in D$, if $P(x)$ then
Proof	Q(x)." (This step is often done mentally.)
	2. Start the proof by supposing x is a particular but arbitrarily chosen
	element of D for which the hypothesis $P(x)$ is true. (This step is often
	abbreviated "Suppose $x \in D$ and $P(x)$.")
	3. Show that the conclusion $Q(x)$ is true by using definitions, previously
	established results, and the rules for logical inference.
Proof by division into	To prove a statement of the form "If A_1 or A_2 or or A_n , then C," prove all
cases	of the following:
	If A_1 , then C_2 ,
	If A_2 , then C_2 ,
	If A_n , then C.
	This process shows that C is true regardless of which of A_1 , A_2 ,, A_n
	happens to be the case.
Proof by Contradiction	1. Suppose the statement to be proved is false. That is, suppose that the
	negation of the statement is true.
	2. Show that this supposition leads logically to a contradiction.
	3. Conclude that the statement to be proved is true.
Proof by	1. Express the statement to be proved in the form
Contraposition	$\forall x \text{ in } D, \text{ if } P(x) \text{ then } Q(x).$
	(This step may be done mentally.)
	2. Rewrite this statement in the contrapositive form
	$\forall x \text{ in } D$, if $Q(x)$ is false then $P(x)$ is false.
	(This step may also be done mentally.)
	3. Prove the contrapositive by a direct proof.
	a. Suppose x is a (particular but arbitrarily chosen) element of D such
	that $Q(x)$ is false.
	b. Show that $P(x)$ is false.
Proof by Mathematical	Consider a statement of the form, "For all integers $n \ge a$, a property $P(n)$ is
Induction	true." To prove such a statement, perform the following two steps:

	Step 1 (basis step): Show that $P(a)$ is true.
	Step 2 (inductive step): Show that for all integers $k \ge a$, if $P(k)$ is true then
	P(k + 1) is true. To perform this step, suppose that $P(k)$ is true, where k is
	any particular but arbitrarily chosen integer with $k \ge a$. [This supposition is
	<i>called the</i> inductive hypothesis.] Then show that $P(k + 1)$ is true.
Proof by strong	Let $P(n)$ be a property that is defined for integers n , and let a and b be fixed
Mathematical	integers with $a \le b$. Suppose the following two statements are true:
Induction	1. $P(a)$, $P(a + 1)$,, and $P(b)$ are all true. (basis step)
	2. For any integer $k \ge b$, if $P(i)$ is true for all integers <i>i</i> from <i>a</i> through <i>k</i> ,
	then $P(k + 1)$ is true. (inductive step)
	Then the statement for all integers $n \ge a$, $P(n)$ is true. (The supposition that
	P(i) is true for all integers i from a through k is called the inductive
	hypothesis. Another way to state the inductive hypothesis is to say that
	P(a), P(a + 1),, P(k) are all true.)
Universal Instantiation	If some property is true of <i>everything</i> in a set, then it is true of any
	particular thing in the set.
Existential	If the existence of a certain kind of object is assumed or has been deduced
Instantiation	then it can be given a name, as long as that name is not currently being used
	to denote something else.

3. Prime Numbers Table

Below are 168 prime numbers in the range (1, 1000).

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997

4. Set Theory

Theorem 6.2.1	1. Inclusion of Intersection: For all sets A and B,
	(a) $A \cap B \subseteq A$ and (b) $A \cap B \subseteq B$.
	2. Inclusion in Union: For all sets A and B,
	(a) $A \subseteq A \cup B$ and (b) $B \subseteq A \cup B$.
	3. Transitive Property of Subsets: For all sets A, B, and C,
	if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
Theorem 6.2.2	Let all sets referred to below be subsets of a universal set U .
	1. <i>Commutative Laws:</i> For all sets <i>A</i> and <i>B</i> ,
	(a) $A \cup B = B \cup A$ and (b) $A \cap B = B \cap A$.
	2. Associative Laws: For all sets A, B, and C,
	(a) $(A \cup B) \cup C = A \cup (B \cup C)$ and
	(b) $(A \cap B) \cap C = A \cap (B \cap C)$.
	3. Distributive Laws: For all sets, A, B, and C,
	(a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and
	(b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

	4. <i>Identity Laws:</i> For all sets A.
	(a) $A \cup \emptyset = A$ and (b) $A \cap U = A$.
	5. Complement Laws:
	(a) $A \cup A^c = U$ and (b) $A \cap A^c = \emptyset$.
	6. Double Complement Law:
	For all sets A , $(A^c)^c = A$.
	7. <i>Idempotent Laws:</i> For all sets <i>A</i> ,
	(a) $A \cup A = A$ and (b) $A \cap A = A$.
	8. Universal Bound Laws: For all sets A,
	(a) $A \cup U = U$ and (b) $A \cap \emptyset = \emptyset$.
	9. <i>De Morgan's Laws:</i> For all sets A and B,
	(a) $(A \cup B)^c = A^c \cap B^c$ and
	(b) $(A \cap B)^c = A^c \cup B^c$.
	10. Absorption Laws: For all sets A and B,
	(a) $A \cup (A \cap B) = A$ and (b) $A \cap (A \cup B) = A$.
	11. Complements of U and Ø:
	(a) $U^c = \emptyset$ and (b) $\emptyset^c = U$.
	12. Set Difference Law: For all sets A and B,
	$A-B=A\cap B^c.$
Theorem $6.2.3$	For any sets A and B, if $A \subseteq B$, then (a) $A \cap B = A$ and (b) $A \cup B = B$.

5. Probability theory

6. Graph Theory