
CS2020 Data Structure and Algorithms Accelerated             Niu Yunpeng 

Good Luck!                  1 

CS2020 Coding Quiz Cheat-sheet 

1. Problem-solving Strategy 

Divide and 

conquer 

Pre-condition: 1) A large problem can be divided 

into several small problems; 2) Several small 

problems can be solved separately and all the 

solutions can be combined together. 

Features: 1) A smaller problem is easier to solve 

than a larger one; 2) All sub-problems are 

independent; 3) Use recursive programming much. 

Greedy 

algorithm 

Pre-condition: A local optimal solution is the overall 

optimal solution (known as optimal sub-structure). 

Features: 1) Have the optimal choice on each step; 

2) Traverse over the collection iteratively. 

Dynamic 

programming 

Pre-condition: Previous sub-problems can provide 

useful information for later ones. 

Features: 1) Some of the sub-problems are 

dependent; 2) Useful previous sub-problems should 

be stored, but this may result in very bad space 

complexity (equal to memorization algorithm in the 

worst scenario); 3) Rely on recursive programming. 

Randomized 

algorithm 

Pre-condition: Be able to determine good enough 

cases and find them. 

Feature: Effectively avoid worst cases. 

Brute-force Pre-condition: 1) Sufficient hardware resources; 2) 

Be able to go through all cases. 

Feature: Easy to think and implement. 

Mathematical 

expression 

Pre-condition: Obtain a close-form formula for the 

problem however large the scale is. 

Feature: The time and space complexity is O(1). 

2. Classical Algorithm Design 

1) Divide and conquer: binary search, peak finding(1D – linear search, 

binary search; 2D – linear search on each column, linear search on 

binary column, increasing path on binary column, border & cross), 

aggressive cow (exponentially increasing range), Herbert log (skip 

unnecessary segments), quick sort, quick select, median list (compare 

two medians and select appropriate halves), shuffle, kSUM (first sort 

then find pairing), counting inversions (#left + #right + #merge), 

multiple merging (only merge two each time). 

2) Greedy algorithm: lecture hall (create and sort a collection of 

starting and ending moments, maintain a queue of lecture halls being 

used, enqueue at starting points & dequeue at ending points, keep 

record of the maximum size of the queue so far), single-sell profit 

(keep record of the minimum value and maximum profit so far), 

activity scheduling (sort by ending time, traverse through the array, 

add one if the last activity has finished). 

3. Useful Java System APIs 

1) java.util.Arrays package 

boolean Arrays.equals(T[] arr1, U[] arr2) returns true 

if two arrays contain the same elements in the same order. 

void Arrays.sort(T[] arr) sorts an array of comparable 

items in its ascending numerical order. 

T[] Arrays.copyOf(T[] origin, int length) copies and 

returns elements in origin from 0 to length-1 to a new array. 

2) java.lang.Integer class 

String Integer.toString(int x, int radix) returns a 

string representing the integer x in base radix. 

int Integer.parseInt(String s, int radix) returns the 

integer that string s represents and converts from base radix to 

decimal. 

3) java.lang.Character class 

boolean Character.isAlphabetic(char c) returns 

whether a certain character represents a letter (by ASCII code). 

boolean Character.isDigit(char c) returns whether a 

certain character represents a digit 0~9 (by ASCII code). 

Notice the following ASCII code point for characters: new line – 10, 

white space – 32, 0 - 48, A – 65, a – 97. 



CS2020 Data Structure and Algorithms Accelerated             Niu Yunpeng 

Good Luck!                  2 

4) Miscellaneous 

boolean m.equals(Object n) returns true if and only if m and 

n points to the same object. 

boolean str1.equals(str2) returns true if two strings 

consists of the same characters in the same order. 

char str.charAt(int x) returns the character of index x in the 

string str. 

boolean arrList.contains(x) returns true if an array list 

contains at least one element y that y.equals(x) is true. 

void Collections.sort(List<T> list) sorts a list of 

comparable items in its ascending order. 
void System.arrayCopy(T[] src, int srcPos, T[] 

dest, int destPos, int length) copies from the source 

array to destination array at a certain position for a determined length. 

4. Important code implementation 

1) Binary search 

public int searchFirstIterative(int[] arr, int target) { 

 int start = 0, end = arr.length - 1, mid = -1; 

 while (start < end) { 

  mid = (start + end) / 2; 

  if (arr[mid] < target) { 

   start = mid + 1; 

  } else { 

   end = mid; 

  } 

 } 

 if (arr[start] == target) { 

  return start; 

 } else { 

  return -1; 

 } 

} 

2) Count inversions 

private int count(ArrayList<T> arr, int start, int end) { 

 if (start == end) { 

  return 0; 

 } else { 

  int mid = (start + end) / 2; 

  return count(arr, start, mid) + count(arr, mid + 1, end) + 

merge(arr, start, mid, end); 

 } 

} 

 

private int merge(ArrayList<T> arr, int start, int mid, int end) { 

 int indexA = start; 

 int indexB = mid + 1; 

 int count = 0; 

 int size = end - start + 1; 

 ArrayList<T> temp = new ArrayList<T>(); 

 

 for (int i = 0; i < size; i++) { 

  if (indexA == mid + 1) { 

   temp.add(arr.get(indexB++)); 

  } else if (indexB == end + 1) { 

   temp.add(arr.get(indexA++)); 

  } else if (arr.get(indexA).compareTo(arr.get(indexB)) > 0) { 

   count += (mid - indexA + 1); 

   temp.add(arr.get(indexB++)); 

  } else { 

   temp.add(arr.get(indexA++)); 

  } 

 } 

 for (int i = 0; i < size; i++) { 

  arr.set(i + start, temp.get(i)); 

 } 

 return count; 

} 

All the best! 

----- 


