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CS2020 Final Cheat-sheet 

1. Java Language Specification 

Class & 

Interface 

1. Implementation: A non-abstract class should include all 

methods of the interface being implemented, and the return type 

and signature for all methods must be identical; 

2. Class: A class can implement multiply interfaces and inherit 

only 1 superclass. Inner class can be used to implement 

multiply inheritance. 

3. Interface: All fields in an interface are public static final, no 

matter declared explicitly or implicitly. All methods in an 

interface should be abstract and non-static. 

4. Constructor: No constructor should appear in an interface. A 

class can have multiply constructors, all of which must have 

different signatures. If superclass does not explicitly define its 

default constructor, all constructors from its subclasses must 

explicitly call one of the super constructors as the first 

statement. 

Inheritance 1. An interface can inherit multiply interfaces, but a subclass 

can only inherit one super-class. 

2. Subclass substitution: The running-time type of a variable 

can be the subclass of its compiler-time type. 

3. Polymorphism: Because of subclass substitution, we are not 

able to check which version of the method is called at compiler-

time. Thus, we can only call (without explicit type cast) the 

methods of the compiler-time type. 

4. Override: Method override cannot change its return type and 

signature, and can only throw the same or subtype of the 

original exception (unless runtime exception). JVM always 

tries to call the overriding method in the subclass whenever 

possible. Final methods can only be overloaded rather than 

overridden. Static methods are always seen as new methods. 

5. Overload: Method overload has to change its signatures 

(number, type or order of parameters). Return type can be 

changed optionally but cannot be used to differentiate. 

Access 

modifier 

1. Static: Belongs to the class itself rather than any object 

instantiated by the class. Constructor can never be static. Local 

variables cannot be static. Static method cannot call non-static 

fields, while non-static methods are free to call static fields. 

Static method can only be called directly or use class name, 

cannot be called using super keyword. Non-static inner class 

cannot exist static fields or methods. 

2. Final: Final variables cannot be re-assigned value, but if it is 

referring to an object, things inside that object can be changed. 

Final methods can only be overloaded rather than overridden. 

All fields in an interface are final implicitly. 

3. Private: Private fields or methods can only be called inside 

its class (and its outer class if its own class is an inner class). 

Methods in an interface cannot be private. 

4. Protected: Can be called by itself and its subclasses. A 

method overriding a protected method cannot be private. 

Exception In Java, exception consists of IO exception and runtime 

exception. It is compulsory to check IO exception only. As long 

as there is potential IO exception, all methods have to surround 

it with try/catch or declare it. 

2. Time Complexity Analysis 

Recurrence 

Tree 

1. Method: Every recurrence relationship can be written in the 

form of a tree. What we need to is: 1) expand the tree big 

enough; 2) find the sum of each level; 3) find how many levels 

there are. In this way, the only last thing is to calculate the sum 

of first n terms for a certain mathematical series. 

2. Mathematical series: 1) 1 + 2 +⋯+ 𝑛 = 𝑂(𝑛2) ; 2) 𝑎 +

𝑎 ∙ 𝑞 + ⋯+ 𝑎 ∙ 𝑞𝑛 = 𝑎 ∙
1−𝑞𝑛

1−𝑞
, it becomes 

𝑎

1−𝑞
 when |𝑞| < 1; 

3) Harmonic series 1 +
1

2
+⋯+

1

𝑛
= log 𝑛. 

Master 

Theorem 

If the recurrence relationship is in the form of 𝑇(𝑛) = 𝑎 ∙

𝑇 (
𝑛

𝑏
) + 𝑓(𝑛), let 𝑥 = 𝑛log𝑏 𝑎 and compare it with 𝑓(𝑛): 

1. If 𝑥 > 𝑓(𝑛), then T(n) = Θ(𝑛log𝑏 𝑎); 
2. If 𝑥 = 𝑓(𝑛), then T(n) = Θ(𝑓(𝑛) ∙ log 𝑛); 

3. If 𝑥 < 𝑓(𝑛), 𝑎 ∙ 𝑓 (
𝑛

𝑏
) < 𝑓(𝑛), then T(n) = Θ(𝑓(𝑛)); 
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Notice: The relationship of > = < here is comparing the order 

of functions. For example, although 𝑥3 > 𝑥2  seems normal, 

𝑛 ≡ 𝑛 ∙ log 𝑛 as logarithmic part is neglectable. 

Bound Upper – 𝑂(𝑛)    Tight – Θ(𝑛)    Lower – Ω(𝑛) 

3. Linear Data Structure & Algorithms 

Array, 

linked 

list, 

queue, 

stack 

1. Sorted array: need 𝑂(𝑛) to insert, 𝑂(log 𝑛) to search; 

2. Unsorted array: need 𝑂(1) to insert, 𝑂(𝑛) to search; 

3. Linked list: need 𝑂(1) to insert, 𝑂(𝑛) to search; 

4. Queue: have enqueue and dequeue, used in BFS; 

5. Stack: have push and pop, used in DFS. 

Search 1. Linear search: traverse the whole list from one end to the other, 

useful in greedy algorithms, need 𝑂(𝑛) time. 

2. Binary search: basic idea of divide-and-conquer, list has to be 

sorted, need 𝑂(log 𝑛) time. 

3. Quick select: randomly select pivots to separate the unsorted list, 

find out the kth item or the first kth largest / smallest items, need 

amortized 𝑂(𝑛) time. 

4. Peak finding: 1) For 1D array, binary search and recurse on 

which half the larger neighbor is in, need time 𝑂(log 𝑛); 2) For 2D 

array, start to find the global maximum in the mid column and its 

two neighbors, recurse on which half the larger neighbor is in, need 

time 𝑂(𝑛 log𝑚) ; 3) For 2D array, start to find the global 

maximum grid in the middle column, compare the left/right 

neighbors of this grid, recurse on the larger side, need time 

𝑂(𝑛 log𝑚); 4) For 2D array, divide intro 4 parts, find the global 

maximum on the border and cross, recurse on the part who is larger 

than that maximum, need time 𝑂(𝑚 + 𝑛). 
5. Herbert log: Use binary search but recurse on both half. Skip the 

whole segment if the start and end are the same. 

6. Aggressive cow: Instead of dividing into two halves, keep 

multiplying by 2 until find the correct range and binary search on 

this range. 

Sorting 0. The lower bound of compare-based sorting is Ω(𝑛 log 𝑛). 
1. Selection sort: In each round, linear search all the items to find 

the suitable one and swap to its position. The first few items will 

be sorted, the rest items remain almost unchanged while a few of 

them have exchanged their positions in pair. Best / worst time are 

both 𝑂(𝑛2), unstable, in-place. 

2. Bubble sort: The last few elements have been sorted, the smallest 

few elements have been shifted forward. They key idea is that all 

elements can only bubble instead of jump. The maximum possible 

times of shifting forward equals the number of element that have 

been sorted. Best time is 𝑂(𝑛), worst time is 𝑂(𝑛2), stable, in-

place. 

3. Insertion sort: The first few elements have been sorted, the rest 

are unchanged. Notice that the first element may not be the smallest 

among the array, it may only be smallest in the sorted part of the 

array. Best time is 𝑂(𝑛), worst time is 𝑂(𝑛2), stable, in-place. 

4. Merge sort: Use divide-and-conquer, always divide into two 

halves and merge them. Best / worst time are both 𝑂(𝑛 log 𝑛) , 
stable, not in-place (at least 𝑂(𝑛) extra space), used in counting 

inversions. 

5. Quick sort: Partition around the pivot and recurse on both halves, 

use two pointers to swap to partition in-place, use pack-duplicate 

or maintain-four-region to handle duplicates, use random pivot to 

avoid the worst case, use paranoid quick sort to ensure the order of 

time complexity, dual pivots to further improve. Average time is 

𝑂(𝑛 log 𝑛), unstable when there are duplicates, in-place. 

6. Heap sort: have two parts, first part is heapify, similar to merger 

sort, keep joining two smaller heaps into one, need time 𝑂(𝑛) ; 
second part is sorting, to extract the maximum one by one, need 

time 𝑂(𝑛 log 𝑛). Total time 𝑂(𝑛 log 𝑛), unstable, in-place. 

7. Reversal sort: use divide-and-conquer or quick sort. 

8. Random shuffle: Use Knuth’s algorithm with time 𝑂(𝑛). 
9. Convex hull: 1) brute force – check for each pair (𝑢, 𝑣), whether 

there is another point 𝑤 such that (u,w, v) is clockwise. If such 

𝑤  does not exist, then it’s on the hull, need time 𝑂(𝑛3) ; 2) 

selection sort –find the next point on the hull one by one, need time 

𝑂(𝑛ℎ) , ℎ  is the number of points on the hull; 3) merge sort – 

choose a vertical line to divide these points into two halves, recurse 

on both and connect two parts, need time 𝑂(𝑛 log 𝑛); 4) quick sort 

– keep building triangles and delete interior points, need average 

time 𝑂(𝑛 log 𝑛). 
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Skip 

List 

Build log 𝑛  levels of linked lists, always go from high-level to 

low-level to search, randomize to insert into higher-levels, all 

operations need time 𝑂(log 𝑛). 

4. Tree & Heap 

Binary 

Search 

Tree (BST) 

1. Terminology: root, leaf, internal, parent, child, ancestor, 

descendant, predecessor, successor, ancestor, descendant, 

subtree; 

2. 𝑂(ℎ)  operations (becomes 𝑂(log 𝑛)  when balanced): 

search, insert, delete, predecessor, successor; 

3. 𝑂(𝑛) operations: pre/in/post/level-order traversal 

AVL Tree 1. When insert / update, needs 1 or 2 rotations to balance. When 

delete, may need up to 𝑂(log𝑛) rotations; 

2. Can store pointers in the nodes to make predecessor and 

successor query becomes 𝑂(1); 
3. Can use adjacent hash table to make search 𝑂(1). 

Augmented 

Tree 

1. Rank tree: Store size of the sub-tree rooted at each node; 

2. Interval tree: Store interval at each node and use the starting 

point as the key. Store the maximum end point of the sub-tree 

at each root for search (if search goes to left, safe to go to left); 

3. Range tree: Store the maximum of the left subtree at each 

node, keep finding the split point to examine the range. 

Binary 

Heap 

Heap is usually stored in an array (by level order), support 

insert, delete and update in 𝑂(𝑛 log 𝑛), does not support search, 

predecessor, successor and traverse. Can use an adjacent hash 

table to support search. Can be used to implement priority 

queue and heap sort, can be further improved using Fibonacci 

heap and heap-of-heaps. 

5. Hashing 

Hashing 

Theory 

1. Hash function: use hashcode() method to get the x for hash 

function, and then match y of hash function to the slot index; 

2. Collision: chaining (use a linked list at each slot, Java 

adapted), open addressing (linear probing, double hashing); 

3. Simple uniform hashing assumption: every key is equally 

likely to map to every bucket independently; 

4. Table resizing: If n == m, then double the table; if n < m/4, 

then halve the table (used by open addressing). 

Fingerprint 

and Bloom 

Filter 

1. Fingerprint has false positive but no false negative; 

2. Bloom filter uses multiple hash functions to decrease the 

probability of false positives. 

Cuckoo 

Hashing 

Use two separate tables with two independent hash functions. 

Push the original item to the other table if collision happens. 

6. Graph Theory 

Graph 

Search 

1. Depth-first search (DFS): Traversal by path, similar to 

pre/in/post-order traversal for trees, use a stack to have iterative 

implementation, easy to implement recursively, have pre / post-

order versions, visit each vertex and node exactly once, produce 

a DFS tree (or forest if the graph is not connected), time 

complexity: 𝑂(𝑉 + 𝐸), space complexity: 𝑂(𝐸); 
2. Breadth-first search (DFS): Traversal by level, use a queue to 

have iterative implementation, hard to implement recursively, 

visit each vertex / node once, produce a BFS tree (or forest), 

time complexity: 𝑂(𝑉 + 𝐸), space complexity: 𝑂(𝑉). 
Connected 

Component 

Use union-find data structure (or known as disjoint sets), quick 

find: find - 𝑂(1) , union - 𝑂(𝑛) ; quick union: find - 𝑂(𝑛) , 
union - 𝑂(𝑛) ; weighted union: find - 𝑂(log 𝑛) , union - 

𝑂(log 𝑛), can be further improved with path compression. 

Detect 

Cycles 

1. In an undirected graph: use simple DFS or BFS, detect a cycle 

when a visited node is explored again, time complexity: 𝑂(𝑉 +
𝐸); 
2. In a directed graph: 1) Use classified DFS to find tree edges 

and back edges (timestamp the discover time and finish time for 

each node). Discovery of cycles is equivalent to discovery of 

back edges. An edge (u, v) is a back edge if and only if d[v] < 

d[u] < f[u] < f[v]. Time complexity: O (V + E); 2) Use 

topological sort, very similar to classified DFS, simplify the 

timestamp process, time complexity: O (V + E); 3) Use Tarjan’s 

algorithm, time complexity: O (V + E). 

Topological 

Sort (in 

DAG) 

1. Post-order DFS: Run post-order DFS on a DAG and output 

the vertices in reverse order (use a stack to implement this) of 

finishing time, time complexity: O (V + E); 

2. Khan’s algorithm (BFS): Record the in-degrees of all nodes 

in an array, then enqueue all nodes with in-degrees of 0. 
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Dequeue one node with in-degree of 0, and update the in-

degrees of all its neighbors. If any neighboring node has an in-

degree of 0 now, enqueue it. Time complexity: O (V + E). 

Shortest 

Path 

1. Bellman-Ford algorithm: Relax all edges for k times (k is the 

number of edges in the graph). Terminate earlier if a whole 

round does not change any estimate distance. Work for negative 

weights. Time complexity: O (EV); 

2. Dijkstra algorithm: For graphs without negative weights, 

each time remove the node with shortest distance in the priority 

queue, relax and add its all adjacent nodes to the priority queue, 

optimized time complexity: O(E * logV); 

3. Constant-weight graph: If all edges have the same weight, 

use simple BFS to find the shortest path (because the minimum 

number of hops is equivalent to minimum distance now); 

4. Directed acyclic graph: In a DAG, shortest path can be found 

via topological sort. Get the topological order of the graph and 

relax in that order. Relax all edges of each node iteratively in 

topological order. Time complexity: O (V + E); 

5. Undirected tree: Simply use BFS or DFS to find shortest path 

in an (undirected, acyclic) tree, time complexity: O (V); 

6. Negative cycle: Run Bellman-Ford for k+1 rounds, a 

negative cycle is detected if there are still changes; 

7. Longest path in a DAG: negative all weights and use the same 

topological sort method; 

8. Single source to all destinations: Standard algorithms can be 

used, just avoid early termination for Dijkstra’s algorithm; 

9. Multiple sources to single destination: Reverse the sources 

and destination and use #8; 

10. Multiple sources to all destinations: Create a super-source; 

11. Shortest path within k steps: Duplicate the graph for k times, 

all edges point from level n to level n+1 (becomes a DAG, use 

topological sort). Time complexity: O(kV + kE); 

12. All pairs shortest path: Floyd-Warshall algorithm, add the 

number of hops gradually, store in a 2D array, need time O(V3); 

13. All pairs shortest path within k steps: Run #12 for all 

different steps [1…k], store in a 3D array, query only need time 

O(1), pre-process needs time O(n4). 

Minimum 

Spanning 

Tree 

(MST) 

1. MST properties: 1) No cycles; 2) If a MST is cut, we can get 

2 MSTs; 3) For every cycle in the graph, the maximum weight 

is not in MST; 4) For every component in the graph, the 

minimum weight across the cut is in MST; 

2. Prim’s algorithm: Similar to Dijkstra, each time add the 

minimum weight across the cut (the edge and the node on the 

other side). In the meantime, use a priority queue to store the 

distance to the existing part of MST for each node. Optimized 

time complexity: O(E * logV); 

3. Kruskal’s Algorithm: Sort all edges according to their 

weights. In such an order, add each edge to the MST if they do 

not form a cycle. Use union-find, if two nodes of an edge is in 

the same set, then we will not add because this will form a cycle. 

Time complexity: O (E * logV); 

4. Borůvka's algorithm: Start from each node itself as a 

component. In each round, add the minimum weight outgoing 

edge for each component to merge each other so that only half 

of the components left. Time complexity: O (E * logV); 

5. Constant-weight graph: Use simple DFS or BFS. The 

resulting DFS or BFS tree is just MST; 

6. DAG with a root: Add minimum-weight incoming edge for 

every node except the root, time complexity: O (V + E); 

7. Maximum spanning tree: Negate all edges and run normal 

algorithms. 

Network 

Flow 

1. Ford-Fulkerson algorithm: Add backward edges for each 

existing edge. Keep finding augmenting path (via DFS or BFS), 

compute its bottleneck capacity (ordered traversal), subtract 

that value for all forward edges on that path and add that value 

for all backward edges on that path. Only terminates for integer 

flow (or well-approximate for real numbers). Time complexity: 

O(F*E), where F is the maximum flow on an edge. 

2. Max-flow / min-cut theorem: Flow f is a maximum flow if 

and only if there are no more augmenting paths in the residual 

graph. The value of that maximum flow equals the minimum 

capacity of an st-cut on that graph. 

3. Electrical distribution problem: create a super-node for all 

power plants and another super-node for all consumers. 




