CS2020 Final Cheat-sheet

<u>1. Java Language Specification</u>

Class &	1. Implementation: A non-abstract class should include all						
Interface	methods of the interface being implemented, and the <i>return type</i>						
	and <i>signature</i> for all methods must be identical;						
	2. <u>Class</u> : A class can implement multiply interfaces and inherit						
	only 1 superclass. Inner class can be used to implement						
	multiply inheritance.						
	3. Interface: All fields in an interface are <i>public static final</i> , no						
	matter declared explicitly or implicitly. All methods in an						
	interface should be <i>abstract</i> and <i>non-static</i> .						
	4. <u>Constructor</u> : No constructor should appear in an interface. A						
	class can have multiply constructors, all of which must have						
	different signatures. If superclass does not explicitly define its						
	default constructor, all constructors from its subclasses must						
	explicitly call one of the super constructors as the first						
	statement.						
Inheritance	1. An interface can inherit multiply interfaces, but a subclass						
	can only inherit one super-class.						
	2. <u>Subclass substitution</u> : The <i>running-time type</i> of a variable						
	can be the subclass of its compiler-time type.						
	3. <u>Polymorphism</u> : Because of subclass substitution, we are not						
	able to check which version of the method is called at compiler-						
	time. Thus, we can only call (without explicit type cast) the						
	methods of the <i>compiler-time type</i> .						
	4. <u>Override</u> : Method override cannot change its return type and						
	signature, and can only throw the same or subtype of the						
	original exception (unless runtime exception). JVM always						
	tries to call the overriding method in the subclass whenever						
	possible. Final methods can only be overloaded rather than						
	overridden. Static methods are always seen as new methods.						
	5. <u>Overload</u> : Method overload has to change its signatures						
	(number, type or order of parameters). Return type can be						
	changed optionally but cannot be used to differentiate.						
Access	1. <u>Static</u> : Belongs to the class itself rather than any object						
modifier	instantiated by the class. Constructor can never be static. Local						

	variables cannot be static. Static method cannot call non-static						
	fields, while non-static methods are free to call static fields.						
	Static method can only be called directly or use class name,						
	cannot be called using super keyword. Non-static inner class						
	cannot exist static fields or methods.						
	2. <u>Final</u> : Final variables cannot be re-assigned value, but if it is						
	referring to an object, things inside that object can be changed.						
	Final methods can only be overloaded rather than overridden.						
	All fields in an interface are final implicitly.						
	3. <u>Private</u> : Private fields or methods can only be called inside						
	its class (and its outer class if its own class is an inner class).						
	Methods in an interface cannot be private.						
	4. Protected: Can be called by itself and its subclasses. A						
	method overriding a protected method cannot be private.						
Exception	In Java, exception consists of IO exception and runtime						
	<i>exception</i> . It is compulsory to check IO exception <i>only</i> . As long						
	as there is potential <i>IO exception</i> , all methods have to surround						
	it with <i>try/catch</i> or declare it.						
2. Time Com	<u>plexity Analysis</u>						
Recurrence	1. <u>Method</u> : Every recurrence relationship can be written in the						
Tree	form of a tree. What we need to is: 1) expand the tree big						
	enough; 2) find the sum of <i>each level</i> ; 3) find <i>how many levels</i>						
	there are. In this way, the only last thing is to calculate the sum						
	of first n terms for a certain mathematical series.						
	2. <u>Mathematical series</u> : 1) $1 + 2 + \dots + n = O(n^2)$; 2) $a + 1 + 2 + \dots + n = O(n^2)$; 3) $a + 1 $						
	$a \cdot q + \dots + a \cdot q^n = a \cdot \frac{1-q^n}{1-q}$, it becomes $\frac{a}{1-q}$ when $ q < 1$;						
	3) Harmonic series $1 + \frac{1}{2} + \dots + \frac{1}{n} = \log n$.						
Master	If the recurrence relationship is in the form of $T(n) = a$.						
Theorem	$T\left(\frac{n}{b}\right) + f(n)$, let $x = n^{\log_b a}$ and compare it with $f(n)$:						
	1. If $x > f(n)$, then $T(n) = \Theta(n^{\log_b a})$;						
	2. If $x = f(n)$, then $T(n) = \Theta(f(n) \cdot \log n)$;						
	3. If $x < f(n), a \cdot f\left(\frac{n}{b}\right) < f(n)$, then $T(n) = \Theta(f(n))$;						

	Notice: The relationship of $> = <$ here is comparing the order					
	of functions. For example, although $x^3 > x^2$ seems normal,					
	$n \equiv n \cdot \log n$ as logarithmic part is neglectable.					
Bound	Upper $- O(n)$ Tight $- \Theta(n)$ Lower $- \Omega(n)$					
3. Linear 🛛	Data Structure & Algorithms					
Array,	1. Sorted array: need $O(n)$ to insert, $O(\log n)$ to search;					
linked	2. <u>Unsorted array</u> : need $O(1)$ to insert, $O(n)$ to search;					
list,	3. Linked list: need $O(1)$ to insert, $O(n)$ to search;					
queue,	<i>ueue</i> , 4. <u>Queue</u> : have enqueue and dequeue, used in BFS;					
stack	5. <u>Stack</u> : have push and pop, used in DFS.					
Search	1. Linear search: traverse the whole list from one end to the other,					
	useful in greedy algorithms, need $O(n)$ time.					
	2. <u>Binary search</u> : basic idea of divide-and-conquer, list has to be					
	sorted, need $O(\log n)$ time.					
	3. <u>Quick select</u> : randomly select pivots to separate the unsorted list,					
	find out the k th item or the first k th largest / smallest items, need					
	amortized $O(n)$ time.					
	4. Peak finding: 1) For 1D array, binary search and recurse on					
	which half the larger neighbor is in, need time $O(\log n)$; 2) For 2D					
	array, start to find the global maximum in the mid column and its					
	two neighbors, recurse on which half the larger neighbor is in, need					
	time $O(n \log m)$; 3) For 2D array, start to find the global					
	maximum grid in the middle column, compare the left/right					
	neighbors of this grid, recurse on the larger side, need time					
$O(n \log m)$; 4) For 2D array, divide intro 4 parts, find the glob						
maximum on the border and cross, recurse on the part who is larg						
than that maximum, need time $O(m+n)$.						
5. <u>Herbert log</u> : Use binary search but recurse on both half. Skip t						
	whole segment if the start and end are the same.					
	b. <u>Aggressive cow</u> : Instead of dividing into two halves, keep					
	this range					
Contine	0. The lower bound of compare based corting is $O(n \log n)$					
sorting	0. The lower bound of <i>compare-based sorting</i> is $\Omega(n \log n)$.					
	1. <u>Selection sort</u> : in each round, linear search all the items to find the suitable one and sugar to its position. The first form items will					
	the solution of the rest items remain almost unchanged while a few of					
	be sorred, the rest items remain almost unchanged while a few of					

both $O(n^2)$, unstable, in-place. 2. Bubble sort: The *last* few elements have been sorted, the smallest few elements have been shifted forward. They key idea is that all elements can only bubble instead of jump. The maximum possible times of shifting forward equals the number of element that have been sorted. Best time is O(n), worst time is $O(n^2)$, stable, inplace. 3. Insertion sort: The *first* few elements have been sorted, the rest are unchanged. Notice that the first element may not be the smallest among the array, it may only be smallest in the sorted part of the array. Best time is O(n), worst time is $O(n^2)$, stable, in-place. 4. Merge sort: Use divide-and-conquer, always divide into two halves and merge them. Best / worst time are both $O(n \log n)$, stable, not in-place (at least O(n) extra space), used in counting inversions. 5. Quick sort: Partition around the pivot and recurse on both halves, use two pointers to swap to partition in-place, use pack-duplicate or maintain-four-region to handle duplicates, use random pivot to avoid the worst case, use paranoid quick sort to ensure the order of time complexity, dual pivots to further improve. Average time is $O(n \log n)$, unstable when there are duplicates, in-place. 6. <u>Heap sort</u>: have two parts, first part is heapify, similar to merger sort, keep joining two smaller heaps into one, need time O(n); second part is sorting, to extract the maximum one by one, need time $O(n \log n)$. Total time $O(n \log n)$, unstable, in-place. 7. Reversal sort: use divide-and-conquer or quick sort. 8. <u>Random shuffle</u>: Use Knuth's algorithm with time O(n). 9. <u>Convex hull</u>: 1) brute force – check for each pair (u, v), whether there is another point w such that (u, w, v) is clockwise. If such w does not exist, then it's on the hull, need time $O(n^3)$; 2) selection sort -find the next point on the hull one by one, need time O(nh), h is the number of points on the hull; 3) merge sort – choose a vertical line to divide these points into two halves, recurse on both and connect two parts, need time $O(n \log n)$; 4) quick sort - keep building triangles and delete interior points, need average time $O(n \log n)$.

them have exchanged their positions in pair. Best / worst time are

CS2020 Data Structure and Algorithms Accelerated

Skip	Build $\log n$ levels of linked lists, always go from high-level to						
List	w-level to search, randomize to insert into higher-levels, all						
	operations need time $O(\log n)$.						
. Tree & l	leap						
Binary	1. Terminology: root, leaf, internal, parent, child, ancestor,						
Search	descendant, predecessor, successor, ancestor, descendant,						
Tree (BS)) subtree;						
	2. $O(h)$ operations (becomes $O(\log n)$ when balanced):						
	search, insert, delete, predecessor, successor;						
	3. $O(n)$ operations: pre/in/post/level-order traversal						
AVL Tre	2 1. When insert / update, needs 1 or 2 rotations to balance. When						
	delete, may need up to $O(\log n)$ rotations;						
	2. Can store <i>pointers</i> in the nodes to make predecessor and						
	successor query becomes $O(1)$;						
	3. Can use <i>adjacent hash table</i> to make search $O(1)$.						
Augmente	<i>d</i> 1. <u>Rank tree</u> : Store size of the sub-tree rooted at each node;						
Tree	2. <u>Interval tree</u> : Store interval at each node and use the starting						
	point as the key. Store the maximum end point of the sub-tree						
	at each root for search (if search goes to left, safe to go to left);						
	3. <u>Range tree</u> : Store the maximum of the left subtree at each						
ימ	hode, keep finding the split point to examine the range.						
Binary	Heap is usually stored in an <i>array</i> (by <i>level order</i>), support						
неар	insert, delete and update in $U(n \log n)$, does not support search,						
	table to support search. Can be used to implement priority						
	augua and hagn sort, can be further improved using Fiboracci						
	hean and hean-of-heans						
Haching	neup und neup of neups.						
. Hashing	1 Hack function was hacked a mathed to get the u for back						
Theory	1. <u>Hash function</u> and then match y of hash function to the slot index:						
ineory	2 Collision: chaining (use a linked list at each slot Java						
	adapted) onen addressing (linear probing double bashing).						
	3 Simple uniform hashing assumption: every key is equally						
	likely to map to every bucket independently.						
	4. Table resizing: If $n == m$, then double the table: if $n < m/4$						
	then halve the table (used by open addressing).						
	men marte me more (abea of open addressing).						

1. Fingerprint has false positive but no false negative; ngerprint 2. Bloom filter uses multiple hash functions to decrease the d Bloom Filter probability of false positives. Use two separate tables with two independent hash functions. Cuckoo Push the original item to the other table if collision happens. ashing raph Theory Graph 1. Depth-first search (DFS): Traversal by path, similar to pre/in/post-order traversal for trees, use a stack to have iterative Search implementation, easy to implement recursively, have pre / postorder versions, visit each vertex and node exactly once, produce a DFS tree (or forest if the graph is not connected), time complexity: O(V + E), space complexity: O(E); 2. Breadth-first search (DFS): Traversal by level, use a queue to have iterative implementation, hard to implement recursively, visit each vertex / node once, produce a BFS tree (or forest), time complexity: O(V + E), space complexity: O(V). Use union-find data structure (or known as disjoint sets), quick nnected mponent find: find - O(1), union - O(n); quick union: find - O(n), union - O(n); weighted union: find - $O(\log n)$, union - $O(\log n)$, can be further improved with *path compression*. 1. In an undirected graph: use simple DFS or BFS, detect a cycle Detect when a visited node is explored again, time complexity: O(V +Cvcles *E*); 2. In a directed graph: 1) Use *classified DFS* to find tree edges and back edges (timestamp the discover time and finish time for each node). Discovery of cycles is equivalent to discovery of back edges. An edge (u, v) is a back edge if and only if d[v] < vd[u] < f[u] < f[v]. Time complexity: O (V + E); 2) Use topological sort, very similar to classified DFS, simplify the timestamp process, time complexity: O(V+E); 3) Use Tarjan's *algorithm*, time complexity: O(V + E). ological 1. Post-order DFS: Run post-order DFS on a DAG and output the vertices in reverse order (use a stack to implement this) of ort (in DAG) finishing time, time complexity: O(V + E); 2. Khan's algorithm (BFS): Record the in-degrees of all nodes in an array, then enqueue all nodes with in-degrees of 0.

Niu Yunpeng

		1	74	
	Dequeue one node with in-degree of 0, and update the in-		Minimum	1. <u>MST properties</u> : 1) No cycles; 2) If a MST is cut, we can get
	degrees of all its neighbors. If any neighboring node has an in-		Spanning	2 MSTs; 3) For every cycle in the graph, the <i>maximum weight</i>
	degree of 0 now, enqueue it. Time complexity: $O(V + E)$.		Tree	is not in MST; 4) For every component in the graph, the
Shortest	1. <u>Bellman-Ford algorithm</u> : Relax all edges for k times (k is the		(MST)	<i>minimum weight</i> across the cut is in MST;
Path	number of edges in the graph). Terminate earlier if a whole			2. <u>Prim's algorithm</u> : Similar to Dijkstra, each time add the
	round does not change any estimate distance. Work for negative			minimum weight across the cut (the edge and the node on the
	weights. Time complexity: O (EV);			other side). In the meantime, use a priority queue to store the
	2. <u>Dijkstra algorithm</u> : For graphs without negative weights,			distance to the existing part of MST for each node. Optimized
	each time remove the node with shortest distance in the priority			time complexity: O(E * logV);
	queue, relax and add its all adjacent nodes to the priority queue,			3. Kruskal's Algorithm: Sort all edges according to their
	optimized time complexity: O(E * logV);			weights. In such an order, add each edge to the MST if they do
	3. <u>Constant-weight graph</u> : If all edges have the same weight,			not form a cycle. Use union-find, if two nodes of an edge is in
	use simple BFS to find the shortest path (because the minimum			the same set, then we will not add because this will form a cycle.
	number of hops is equivalent to minimum distance now);			Time complexity: O (E * logV);
	4. <u>Directed acyclic graph</u> : In a DAG, shortest path can be found			4. <u>Borůvka's algorithm</u> : Start from each node itself as a
	via topological sort. Get the topological order of the graph and			component. In each round, add the minimum weight outgoing
	relax in that order. Relax all edges of each node iteratively in			edge for each component to merge each other so that only half
	topological order. Time complexity: $O(V + E)$;			of the components left. Time complexity: O (E * logV);
	5. <u>Undirected tree</u> : Simply use BFS or DFS to find shortest path			5. <u>Constant-weight graph</u> : Use simple DFS or BFS. The
	in an (undirected, acyclic) tree, time complexity: O (V);			resulting DFS or BFS tree is just MST;
	6. <u>Negative cycle</u> : Run <i>Bellman-Ford</i> for k+1 rounds, a			6. <u>DAG with a root</u> : Add minimum-weight incoming edge for
	negative cycle is detected if there are still changes;			every node except the root, time complexity: $O(V + E)$;
	7. Longest path in a DAG: negative all weights and use the same			7. <u>Maximum spanning tree</u> : Negate all edges and run normal
	topological sort method;			algorithms.
	8. <u>Single source to all destinations</u> : Standard algorithms can be		Network	1. Ford-Fulkerson algorithm: Add backward edges for each
	used, just avoid early termination for Dijkstra's algorithm;		Flow	existing edge. Keep finding augmenting path (via DFS or BFS),
	9. <u>Multiple sources to single destination</u> : Reverse the sources			compute its bottleneck capacity (ordered traversal), subtract
	and destination and use #8;			that value for all forward edges on that path and add that value
	10. <u>Multiple sources to all destinations</u> : Create a super-source;			for all backward edges on that path. Only terminates for integer
	11. <u>Shortest path within k steps</u> : Duplicate the graph for k times,			flow (or well-approximate for real numbers). Time complexity:
	all edges point from level n to level n+1 (becomes a DAG, use			$O(F^*E)$, where F is the maximum flow on an edge.
	topological sort). Time complexity: $O(kV + kE)$;			2. <u>Max-flow / min-cut theorem</u> : Flow f is a maximum flow if
	12. All pairs shortest path: Floyd-Warshall algorithm, add the			and only if there are no more augmenting paths in the residual
	number of hops gradually, store in a 2D array, need time O(V ³);			graph. The value of that maximum flow equals the minimum
	13. All pairs shortest path within k steps: Run #12 for all			capacity of an st-cut on that graph.
	different steps [1k], store in a 3D array, query only need time			3. <u>Electrical distribution problem</u> : create a super-node for all
	$O(1)$, pre-process needs time $O(n^4)$.			power plants and another super-node for all consumers.