
CS2020 Data Structure and Algorithms Accelerated Niu Yunpeng

Good Luck! 1

CS2020 Quiz 2 Cheat-sheet

1. Graph Theory

Search in a

graph

1. Depth-first search (DFS): Traversal by path, similar to

pre/in/post-order traversal for trees, use a stack to have

iterative implementation, easy to have recursive

implementation, have pre / post-order versions, visit each

vertex and node exactly once, produce a DFS tree (or

forest if the graph is not connected), time complexity: O

(V + E);

2. Breadth-first search (DFS): Traversal by level, use a

queue to have iterative implementation, hard to have

recursive implementation, visit each vertex and node

exactly once, produce a BFS tree (or forest), time

complexity: O (V + E).

Detect

cycles in a

graph

1. In an undirected graph: use simple DFS or BFS, a

cycle is found when a visited node is explored again,

time complexity: O (V + E);

2. In a directed graph: 1) Use classified DFS to find tree

edges and back edges (timestamp the discover time and

finish time for each node). Discovery of cycles is

equivalent to discovery of back edges. An Edge (u, v) is

a back edge if and only if d[v] < d[u] < f[u] < f[v]. Time

complexity: O (V + E); 2) Use topological sort, very

similar to classified DFS, simplify the timestamp

process, time complexity: O (V + E); 3) Use Tarjan’s

algorithm, time complexity: O (V + E).

Topological

sort (in

DAG)

1. Post-order DFS: Run post-order DFS on a DAG and

output the vertices in reverse order (use a stack to

implement this) of finishing time, time complexity: O (V

+ E);

2. Khan’s algorithm (BFS): Record the in-degrees of all

nodes in an array, then enqueue all nodes with in-degrees

of 0. Dequeue one node with in-degree of 0, and update

the in-degrees of all its neighbors. If any neighboring

node has an in-degree of 0 now, enqueue it. Time

complexity: O (V + E).

Shortest

path in a

graph

1. Bellman-Ford algorithm: Relax all edges for k times

(k is the number of edges in the graph). Terminate earlier

if a whole round does not change any estimate distance.

Work for negative weights. Time complexity: O (EV);

2. Dijkstra algorithm: For graphs without negative

weights, each time remove the node with shortest

distance in the priority queue, relax and add its all

adjacent nodes to the priority queue, optimized time

complexity: O(E * logV);

3. Constant-weight graph: If all edges have the same

weight, use simple BFS to find the shortest path (because

the minimum number of hops is equivalent to minimum

distance now);

4. Directed acyclic graph: In a DAG, shortest path can be

found via topological sort. Get the topological order of

the graph and relax in that order. Relax all edges of each

node iteratively in topological order. Time complexity: O

(V + E);

5. Undirected tree: In a (undirected, acyclic) tree, we can

use simple BFS or DFS to find shortest path, time

complexity: O (V);

6. Negative cycle: Run Bellman-Ford for k+1 rounds, a

negative cycle is detected if there are still changes in

estimated distances;

7. Longest path in a DAG: negative all weights and use

the same topological sort method;

8. Single source to all destinations: Standard algorithms

can be used, just avoid early termination for Dijkstra’s

algorithm;

9. Multiple sources to single destination: Reverse the

sources and destination and use #8;

8. Multiple sources to all destinations: Use the

super-source method.

CS2020 Data Structure and Algorithms Accelerated Niu Yunpeng

Good Luck! 2

Minimum

spanning

tree (MST)

1. MST properties: 1) No cycles; 2) If a MST is cut, we

can get 2 MSTs; 3) For every cycle in the graph, the

maximum weight is not in MST; 4) For every component

in the graph, the minimum weight across the cut is in

MST;

2. Prim’s algorithm: Similar to Dijkstra, each time add

the minimum weight across the cut (the edge and the

node on the other side). In the meantime, use a priority

queue to store the distance to the existing part of MST

for each node. Optimized time complexity: O(E * logV);

3. Kruskal’s Algorithm: Sort all edges according to their

weights. In such an order, add each edge to the MST if

they do not form a cycle. Use union-find, if two nodes of

an edge is in the same set, then we will not add because

this will form a cycle. Time complexity: O (E * logV);

4. Borůvka's algorithm: Start from each node itself as a

component. In each round, add the minimum weight

outgoing edge for each component to merge each other

so that only half of the components left. Time

complexity: O (E * logV);

5. Constant-weight graph: Use simple DFS or BFS. The

resulting DFS or BFS tree is just MST;

6. Directed acyclic graph with a root: Add minimum

weight incoming edge for every node except the root,

time complexity: O (V + E);

7. Maximum spanning tree: Negate all edges and run

normal algorithms.

Graph

modelling

1. Meet in the middle: Determine the shortest path when

a certain edge has to be passed by;

2. Super source: Multiple source to all destinations;

3. Duplicate: When some nodes have special cases;

4. Vertex contraction: Merge two edges into one.

2. Tree, Heap & Union-find

Binary Search

Tree (BST)

1. Terminology: root, leaf, internal, parent, child,

ancestor, descendant, predecessor, successor, ancestor,

descendant, subtree;

2. O (h) operations (become O (logn) for balanced

trees): search, insert, delete, predecessor, successor;

3. O (n) operations: pre/in/post-order traversal.

AVL Tree Need 1 or 2 times of rotations to keep balance.

Augmented

Tree

1. Rank tree: Store size of the sub-tree rooted at each

node;

2. Interval Tree: Store interval at each node and use the

starting point as the key. Store the maximum end point

of the sub-tree at each root for search.

Heap 1. Max/min heap: parent is larger/smaller than both

children, no relation guaranteed between children;

2. Need O (n) time to find predecessor/successor;

3. Heap sort: divide into two process, heapify needs O

(n) time, while extraction needs O(n logn) time;

4. Heap can be used to implement priority queue,

heap-of-heaps is useful for some problems.

Disjoint Set 1. Quick find: find - O(1), union - O(n);

2. Quick union: find - O(n), union - O(n);

3. Weighted union: find - O(logn), union - O(logn).

3. Hashing

Hashing Theory 1. Hash function: use hashcode() method to get the x

for hash function, and then match y of hash function

to the slot index;

2. Collision: chaining (use a linked list at each slot,

Java adapted), open addressing (linear probing,

double hashing);

3. Simple uniform hashing assumption: every key is

equally likely to map to every bucket independently;

4. Table resizing: If n == m, then double the table; if

n < m/4, then halve the table.

Fingerprint and

Bloom filter

1. Fingerprint has false positive but no false negative;

2. Bloom filter uses multiple hash functions to

decrease the probability of false positives.

---- End ----

