CS4236 Final Examination Cheat-sheet

<u>1. CBC Encryption & MAC</u>

1) Cipher Block Chaining (CBC) mode: $c_i = F_k(m_i \oplus c_{i-1})$ and $c_0 = IV$. 2) *IV requirements:* randomly selected, unpredictable & cannot be reused. 3) Drawbacks: cannot be parallelized, 1 additional ciphertext block (c_0 , *IV*), *F* must be invertible (thus we cannot use PRP, pseudorandom permutation). 4) *Error propagation:* If a bit in block c_i is flipped in the transmission of the ciphertext, then p_i is garbled and the corresponding bit in p_{i+1} is flipped. 5) *Stateful CBC:* insecure because IV becomes predictable (SSL 2.0 BEAST attack, because IV is the last block of the previous ciphertext).

6) *CBC-MAC*: 1 $t_i = F_k(m_i \oplus t_{i-1})$ and $t_0 = 0^n$, only output the last block t_l . 7) *Concatenation attack:* possible for arbitrary length CBC-MAC (either use

the length of the message as t_0 or encrypt the tag with another key).

8) *CBC-MAC cannot use random IV:* doing so (thus must send IV in clear with the message) is vulnerable because the attacker can change the same i^{th} bit in IV and the first block in message body m_1 , without affecting the tag.

2. RSA Encryption

1) Key pair: public key (n, e) and private key (n, d).

2) *Derivation:* we have $n = p \cdot q$ and $\varphi(N) = (p-1)(q-1)$, then we could get $gcd(e, \varphi(N)) = 1$, $e \cdot d \equiv 1 \mod \varphi(N)$.

3) Encryption & decryption: $c = m^e \mod N$ and $m = c^d \mod N$.

4) *Selection of p and q:* two large-enough primes of equal length. We could use Miller-Rabin test to generate large primes efficiently.

5) Textbook RSA is neither CPA-secure nor CCA-secure since deterministic.

Common-modulus attack 1

- several users share N; users need private encryption

- (e_i,d_i) to user i; $\mathsf{pk}_i{=}(\mathsf{N},\mathsf{e}_i)$ and $\mathsf{sk}_i{=}(\mathsf{N},\mathsf{d}_i)$

– user i compute $e_id_i\text{=}1 \mbox{ mod }\varphi(N)$ and solves (X-p)(X-q)=0

Common-modulus attack 2

- several users share N; suppose $gcd(e_1,e_2)=1$
- adversary sees c_1 = $m^{e1} \mbox{ mod } N$, c_2 = $m^{e2} \mbox{ mod } N$
- since gcd(e_1 , e_2)=1, there exist X,Y s.t. X e_1 + Y e_2 = 1
- adversary computes $c_1^{\chi} c_2^{\gamma} = m^{\chi_{e1}} m^{\gamma_{e2}} = m^{\chi_{e1+\gamma_{e2}}} = m \mod N$

CCA attack 1

- obtains a user's ciphertext c=[me mod N], picks r <-\$- $Z_N^{\,*}$ and creates forgery c'=rec mod N
- submits c' for decryption, obtains m' = decryption of c', and discovers m = m'r^1 mod N

• $m'r^{1}=(c')^{d}r^{1}=(r^{e}m^{e})^{d}r^{1}=r^{ed}m^{ed}r^{1}=rmr^{1}=m \mod N$

CCA attack 2

- obtains a user's ciphertext c=[me mod N] of unknown m
- easy to generate c' that is an encryption of [2m mod N]
 - by setting c' = [2^e c mod N] = 2^e m^e = (2m)^e mod N

<u>3. Diffie-Hellman Key Exchange</u>

1) $\mathbb{Z}_N^* = \text{invertible elements in } \{1, 2, \dots, N-1\}$ under multiplation modulo N.

2) *Theorem: b* is invertible modulo *N* if and only if they are co-prime.

3) *Cyclic group:* given a finite group G of order m, G is cyclic if and only if there exists a generator g such that $\{g^0, g^1, \dots\}$ represents all elements in G.

a. Any group of prime order is cyclic, any non-identity element is a generator;

b. Thus, if p is prime, \mathbb{Z}_p^* (of order p-1) is cyclic.

4) Order of element in cyclic group: for all $x \in \mathbb{Z}_p^*$, the smallest positive integer such that $x^a \equiv 1 \mod p$. In cyclic group \mathbb{Z}_p^* , the order of any element is a factor of p-1 (the order of the group \mathbb{Z}_p^*).

5) *Quadratic residue (QR):* an element $x \in \mathbb{Z}_p^*$ which has a square root in \mathbb{Z}_p^* .

- a. Each element $x \in \mathbb{Z}_p^*$ has either 0 or 2 square root(s) in \mathbb{Z}_p^* ;
- b. Exactly half of the elements in \mathbb{Z}_p^* are QR;
- c. It is computationally feasible to compute square roots in \mathbb{Z}_p^* .

6) *Discrete log (DL):* given the generator g and an element x in a cyclic group, find e such that x ≡ g^e mod N. DL is hard relative to G for all PPT algorithms.
7) Diffie-Hellman (DH) problem: given a cyclic group G with its generator g, define DH_a(h₁,h₂) = DH_a(g^x, g^y) = g^{xy}.

a. Computational Diffie-Hellman (CDH): given g, h_1, h_2 , find $DH_g(h_1, h_2)$;

b. Decision Diffie-Hellman (DDH): given g, h_1, h_2 , and distinguish $DH_g(h_1, h_2)$ from a uniform element in G;

- c. If DL is easy, then CDH problem is also easy;
- d. DDH is only hard if h_1 and h_2 are QRs inside \mathbb{Z}_p^* .
- 8) *DH key exchange:* set up p & g, exchange $g^x \& g^y$ to get g^{xy} as key.
- a. DH key exchange achieves <u>forward secrecy</u>;

b. DH key exchange is vulnerable to <u>MITM attack</u>, need authenticated channel.

4. Hash & Digital Signature

- 1) Collision resistance \Rightarrow second-preimage resistance \Rightarrow preimage resistance.
- 2) Digital signature: public verifiability, transferable & non-repudiation.
- 3) RSA signature: textbook version is not secured.

No-message attack

- given pk=<N,e>, choose any $\sigma \in Z_N^*$
- compute m = [$\sigma^e \mod N$]
- output a forgery (m, σ); σ is a valid signature of m
- m may have no semantic meaning, but can be dangerous in some cases, thus this shouldn't be allowed

Forging a signature on arbitrary message

- adversary chosen message $m \in {Z_N}^*$
- finds m_1 and $m_2,\,m{=}m_1m_2,\,that$ are likely accepted by signer
- obtains σ_1 and σ_2 for m_1 and m_2

$$- \sigma^{e} = (\sigma_{1} \sigma_{2})^{e} = (m_{1}^{d} m_{2}^{d})^{e} = m_{1}^{ed} m_{2}^{ed} = m_{1} m_{2} = m \mod N$$

- 4) Digital Signature Algorithm (DSA):
 - p, q: two primes s.t. q|p-1 (details out of scope)
 - g: a generator in a prime-order subgroup of Z_p* having order q (hence, g is a generator of a group of size q)
 - h: $\{0,1\}^* \to Z_q \,$ (a collision resistant hash function)

```
private key: randomly chosen x \in Z_q^*
```

public key: p, q, g, y where $y = g^x \mod p$

Sign: given a message $m \in \{0,1\}^*,$

```
(1) choose k \in Z_q^* uniformly at random
```

- (2) compute $r = (g^k \mod p) \mod q$ (in Z_q)
- (3) compute $s = (h(m) + x \cdot r) \cdot k^{-1} \mod q$ (in Z_q)
- (4) the signature for m is: (r, s)

Vrfy: given a message $m \in \{0,1\}^*$ and a signature (r, s),

```
(1) compute u_1 = h(m) \cdot s^{-1} \mod q
```

```
(2) compute u_2 = r \cdot s^{-1} \mod q
```

(3) output **YES** iff $r = ((g^{u_1}y^{u_2} \mod p) \mod q)$

a. *k* must have high entropy, be unpredictable and unique (cannot reuse); b. Signing can be fast (by pre-computing k, k^{-1} and r).

5. El Gamal Encryption

1) *Key pair:* private key – x, public key – generator g and $h = g^x$.

- 2) Encryption $E(m) = \langle mh^r, g^r \rangle$ for random r, decryption $D(\langle a, b \rangle) = ab^{-x}$.
- 3) Security implications with different assumptions:
- a. If DL can be solved, one can derive private key from public key;
- b. If CDH can be solved, one can get plaintext from ciphertext and public key;
- c. If DDH can be solved, El Gamal is not CPA-secure;
- d. For El Gamal with \mathbb{Z}_p^* , one should pick g that is a QR from \mathbb{Z}_p^* .

6. Transport Layer Security (TLS)

1) Handshake protocol in TLS:

2) Record-layer protocol in TLS: use k_c and k_c' to encrypt/authenticate all messages from the client, use k_s and k_s' to encrypt/authenticate all messages from the server. Use sequence number to prevent replay attack. Use two pairs of keys (i.e., 4 independent keys) to prevent reflection attack.

- 3) Key exchange methods in TLS:
- a. RSA-based: pervasive surveillance (no forward secrecy);
- b. Fixed DH: no forward secrecy, no authentication for C;
- c. Ephemeral DH: forward secrecy (due to fresh pre-master key).

7. Homomorphic Encryption

- 1) Homomorphic scheme: $E(m_1 op_1 m_2) = E(m_1) op_2 E(m_2)$.
- 2) Holomorphicity implies malleability, which means CCA-insecure.
- 3) For both unpadded RSA and El Gamal, $E(m_1 \cdot m_2) = E(m_1) \cdot E(m_2)$.

8. Secret Sharing

1) Shamir threshold scheme: dealer randomly picks a polynomial f of degree t-1 (on a finite field) such that f(0) = k. Participant P_i gets the value f(i). 2) Feldman's verifiable scheme: similarly, given polynomial $f(x) = \sum_{i=t-1}^{0} a_i x^i$, send f(i) to P_i . Dealer broadcasts $g^K \mod P$, $g^{a_1} \mod P$, ..., $g^{a_{t-1}} \mod P$.