GET1018 Final Examination Cheat-sheet

1. Counting & Probability

- 1) Fibonacci series: $C_{n+1} = C_n + C_{n-1}$.
- 2) Independent events: $P(A \land B) = P(A) \cdot P(B)$.
- 3) Mutually exclusive events: $P(A \cup B) = P(A) + P(B)$.
- 4) When the times of experiments is large enough, frequency will converge to the underlying actual probability.
- 5) Mathematical expectation: $E(X) = \sum_{i=1}^{k} x_i p_i$ and $var(X) = E(X^2) [E(X)]^2$.

2. Combination & Permutation

- 1) Simple permutation: P(n,r) = n!/(n-r)!.
- 2) Simple combination: $C(n,r) = n!/(r! \cdot (n-r)!)$.
- 3) Stirling formula (approximation): $n! = \sqrt{2\pi} \cdot \sqrt{n} \cdot (n/e)^n$ if $n \gg 1$.
- 4) Euler formula: $e^{ix} = \cos x + i \cdot \sin x$.
- 5) The *natural logarithm* is discovered by $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$.
- 6) The value of Pi can be approximated by $\prod_{n=1}^{\infty} (\frac{2n}{2n-1} \cdot \frac{2n}{2n+1}) = \frac{\pi}{2}$.
- 7) Binomial expansion: $(a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \dots + \binom{n}{n}a^0b^n$.
- 8) Pascal triangle: C(n+1,r) = C(n,r) + C(n,r-1).
- 9) Poker game straight flash: $P = \frac{4 \cdot 10}{C(52,5)}$
- 10) Poker game four of a kind: $P = \frac{13 \cdot (52 4)}{c(52,5)}$.
- 11) Poker game full house: $P = \frac{13 \cdot C(4,3) \cdot 12 \cdot C(4,2)}{C(52,5)}$.
- 12) Poker game flush: $P = \frac{4 \cdot C(13,5) 40}{C(52,5)}$.
- 13) Poker game straight: $P = \frac{10 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 40}{C(52,5)}$.
- 14) Poker game three of a kind: $P = \frac{13 \cdot C(4,3) \cdot 48 \cdot 44}{C(52,5) \cdot 2!}$.

15) Poker game – two pairs: $P = \frac{13 \cdot C(4,2) \cdot 12 \cdot C(4,2) \cdot 44}{C(52.5) \cdot 2!}$.

3. Normal Distribution

- 1) Probability density function (PDF): $\frac{1}{\sqrt{2\pi}\sigma} \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}$.
- 2) We also have $Z = \frac{r (nq + 1/2)}{\sqrt{npq}}$ for $(p + q)^n$.

4. Game Theory

- 1) Zero-sum game: in any two-player zero-sum game, there is a certain "right" outcome. If the players follow their best strategies, the game will always have the same ending.
- 2) *Nash equilibrium:* a strategy profile is a Nash equilibrium if no player can do better by unilaterally changing his or her strategy.
- 3) If we allow mixed strategies, every game with a finite number of players (and each player has a finite number of pure strategies) will have at least one Nash equilibrium.
- 4) Dominating strategy: we say A_i dominates A_j if for each payoff in $A_i \ge$ each payoff in A_j and at least one payoff in $A_i >$ one payoff in A_j .
- 5) Saddle point: if there exists $\max-\min(A) = -\max-\min(B)$, then it can be used by rational players as pure strategies for the game.
- 6) If a stable point cannot be reached, the players may use a randomized mixed strategy to find payoff equilibrium.
- 7) To find the optimal solution for fixed strategies, one should express the expected payoff in the form of $(x p) \cdot (y q)$ and then let x = p, y = q.
- 8) 2/3 of the average: $(0,0,\cdots,0)$ is the only Nash equilibrium.
- 9) Diner's dilemma: all choose the expensive dish since x y > (a b)/n.

--- End ---