MA1506 Final Cheat-sheet AY2016/2017 Semester 2

Part 1 Mathematical Modelling

1. Harmonic Oscillator

0) Newton's $2^{\text {nd }}$ Law tells x as position, \dot{x} as velocity, \dddot{x} as acceleration.

1) Simple harmonic oscillator (pendulum): We have $m \ddot{x}=-k x$, which is usually written as $\ddot{x}+\omega^{2} x=0$. The phase-amplitude form is $x(t)=$ $A \cos (\omega t-\delta)$. Here, A is amplitude, $T=2 \pi \sqrt{m / k}$ is period, $f=1 / \mathrm{T}$ is frequency, ω is angular frequency. When initial conditions are given, we have $A=\sqrt{x_{0}^{2}+\left(v_{0} / \omega\right)^{2}}$.
2) Damped harmonic oscillator: We have $m \ddot{x}+b \dot{x}+k x=0$, where $m, b, k>0$. When $b^{2}-4 m k>0$, over dumping, goes to 0 rapidly without oscillation; when $b^{2}-4 m k=0$, critical dumping, goes to 0 rapidly without oscillation; when $b^{2}-4 m k<0$, under dumping, goes to 0 slowly with oscillation. For the $3^{\text {rd }}$ case, we have $x(t)=A e^{-(b / 2 m) t} \cos (\omega t-\delta)$ where $\omega=\sqrt{4 m k-b^{2}} / 2 m$. This is applicable to pendulum with air resistance.
3) Forced undamped oscillator: We have $m \ddot{x}+k x=F_{0} \cos \alpha t$ whose solution is $x(t)=A \cos (\omega t-\delta)+\frac{F_{0}}{\omega^{2}-\alpha^{2}} \cdot \cos \alpha t$ where $\omega=\sqrt{k / m}$. If we know $x(0)=\dot{x}(0)=0$, then $x(t)=A(t) \sin \left(\frac{\alpha+\omega}{2} t\right)$ where $A(t)=$ $\frac{F_{0}}{\alpha^{2}-\omega^{2}} \sin \left(\frac{\alpha-\omega}{2} t\right)$. Beating means the faster signal $(\alpha+\omega) / 2$ is modulated by the slower one $(\alpha-\omega) / 2$, so we can only hear $A(t)$; resonance means when $\alpha=\omega$, then $A(t)=F_{o} t /(2 m \omega)$ and oscillation goes out of control. 4) Forced damped oscillator: We have $m \ddot{x}+b \dot{x}+k x=F_{0} \cos \alpha t$. If t is big enough, steady state solution is $x(t)=x_{p}(t)=A(\alpha) \cdot \cos (\alpha t-\gamma)$ where $A(\alpha)=\frac{F_{0} / m}{\sqrt{\left(\omega^{2}-\alpha^{2}\right)^{2}+\left(b^{2} \alpha^{2}\right) / m^{2}}}$ and $\omega=\sqrt{k / m}$.
4) Equilibrium \& Stability: Equilibrium solution means $x(t)$ is a constant or $\dot{x}=0$. Equilibrium points are stable if points nearby stay close to it.
2. Buoyancy Force \& Cantilevered Beam
1) Archimedes' principle: We have $m \ddot{x}=-x A \rho g$, which is similar to simple harmonic motion $\ddot{x}+\omega^{2} x=0$ where $\omega=\sqrt{A \rho g / m}$.
2) Euler's equation: We have $\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} y}{d x^{2}}\right)=W(x)$, which usually becomes $\frac{d^{4} y}{d x^{4}}=\frac{-\alpha}{E I}$ when $W(x)$ is constant. Then, the solution becomes $\mathrm{y}(\mathrm{x})=$ $\frac{\alpha L^{4}}{2 E I}\left(-\frac{1}{12}\left(\frac{x}{L}\right)^{4}+\frac{1}{3}\left(\frac{x}{L}\right)^{3}-\frac{1}{2}\left(\frac{x}{L}\right)^{2}\right)$.
3. Population Model
0) No-crossing principle: Since there is exactly one solution for any $1^{\text {st }}$ order ODE with given initial condition, curves never intersect.
1) Malthus model: Given $\frac{d N}{d t}=(B-D) \cdot N$, its solution is $N(t)=N_{0} e^{k t}$ where $k=B-D$. If $k>0$, population explosion; if $k=0$, population stable; if $k<0$, population extinction.
2) Logistic model: Given $\frac{d N}{d t}=(B-s N) \cdot N$, its solution is $N(t)=$ $\frac{B}{s+\left(\frac{B}{N_{0}}-s\right) e^{-B t}}$ with sustainable value B / s. If $N_{0}<B / s$, then $N(t)$ keeps increasing and tends to the sustainable value; if $N_{0}>B / s$, then $N(t)$ keeps decreasing and tends to the sustainable value.
3) Harvesting model: Given $\frac{d N}{d t}=B N-s N^{2}-E$, let $\Delta=B^{2}-4 s E$. If $\Delta<$ 0 , no equilibrium point, keep decreasing until extinction; if $\Delta>0$, have two guidelines (upper stable \& lower unstable) and three regions, the upper region is good, the middle one is able to bounce back, the lower one is dangerous; if $\Delta=0$, have one guideline and two increasing regions.
Extinction time: Integrate $\mathrm{T}=\int_{N_{0}}^{0} \frac{1}{-S N^{2}+B N-E} d N$.

Part 2 Laplace Transform

1. Laplace transform for basic functions:

$$
\begin{array}{cl}
L\left(e^{a t}\right)=\frac{1}{s-a} & L\left(t^{n}\right)=\frac{n!}{s^{n+1}} \\
L(\sin \omega t)=\frac{\omega}{s^{2}+\omega^{2}} & L(\cos \omega t)=\frac{s}{s^{2}+\omega^{2}} \\
L(\sinh \omega t)=\frac{\omega}{s^{2}-\omega^{2}} & L(\cosh \omega t)=\frac{s}{s^{2}-\omega^{2}}
\end{array}
$$

2. Derivative transform:

$$
L\left(f^{\prime}\right)=s L(f)-f(0) \quad L\left(f^{\prime \prime}\right)=s^{2} L(f)-s f(0)-f^{\prime}(0)
$$

3. s-shifting: $L\left(e^{a t} f(t)\right)=F(s-a) L\left(t^{n} f(t)\right)=(-1)^{n} F^{(n)}(s)$
4. t-shifting: $L(f(t-a) u(t-a))=e^{-a s} F(s)$
5. Dirac delta function: We have $\delta\left(t-t_{0}\right)=0$ for $t \neq t_{0}$ and $\int_{-\infty}^{\infty} \delta(t-$ $\left.t_{0}\right) d t=1$, then $L\left(\delta\left(t-t_{0}\right)\right)=e^{-s t_{0}}$.
6. Handle non-standard data: method of undetermined coefficients or method of function translation.

Part 3 Matrix

1. $n \times n$ matrix: symmetric $A^{T}=A$, anti-symmetric $A^{T}=-A$, identity $A I=I A=A$, orthogonal $\mathrm{B} \cdot B^{T}=I$, involutory $\mathrm{AA}=\mathrm{I}$.
2. Rotation matrix (anti-clockwise): $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$.
3. Shear matrix (clockwise, parallel to x-axis): $\left[\begin{array}{cc}1 & \tan \theta \\ 0 & 1\end{array}\right]$.
4. Matrix with solution of equations: Given $A \cdot X=B$, so we have $X=$ $A^{-1} \cdot B$, when A is a $n \times n$ matrix and B is a $n \times 1$ matrix.
When $X \neq 0$, a unique solution exists if $\operatorname{det}(A) \neq 0$. When $X=0$, there are infinite non-zero solutions if $\operatorname{det}(A)=0$, there is only a zero solution if $\operatorname{det}(A) \neq 0$.
5. Leontief input-output model: $X=(I-M)^{-1} \cdot D$.
6. Eigenvalue \& eigenvector: Given $T \vec{u}=\lambda \vec{u}$, eigenvalues and corresponding eigenvectors can be found by $\operatorname{det}(T-\lambda I)=0$.
Sum of the eigenvalues is the trace of the matrix, while product of the eigenvalues is the determinant of the matrix.
7. Diagonalization: For an $n \times n$ matrix A , it is diagonalizable if $A=$ $P D P^{-1}$, where P is matrix of n non-parallel eigenvectors and D is the diagonal matrix of n eigenvalues.
8. Weather forecast model: we have $M^{n}=P\left[\begin{array}{cc}\lambda_{1}^{n} & 0 \\ 0 & \lambda_{2}^{n}\end{array}\right] P^{-1}$.
9. Markov chain: For a transform M, becomes M^{n} after n times.
10. Dimension of linear transformation: An $m \times n$ matrix will transform a n D vector into a m - D vector.
11. Volume and determinant: The determinant of a 2×2 matrix is the area of parallelogram, while that of a 3×3 matrix is the volume of parallelepiped (rank 3, rank 2, rank 1). For a plane generated by \vec{u} and \vec{v}, \vec{w} is on the plane if and only if $(\vec{u} \times \vec{v}) \cdot \vec{w}=0$.

Part 4 System of ODEs

1. Method of eigenvalue: $\alpha=\left(\operatorname{Tr}(B) \pm \sqrt{\operatorname{Tr}^{2}(B)-4 \operatorname{det}(B)}\right) / 2$.

If $\Delta>0$, the general solution is $c_{1} u_{1} e^{\alpha_{1} t}+c_{2} u_{2} e^{\alpha_{2} t}$ with eigenvalues α_{1}, α_{2} and corresponding eigenvectors u_{1}, u_{2}; if $\Delta<0$, the general solution is $e^{\alpha t} \cdot(u \cos \beta t-v \sin \beta t)+i e^{\alpha t} \cdot(u \sin \beta t+v \cos \beta t)$ where eigenvalues are $\alpha \pm i \beta$.
2. Method of Laplace transform: Let $\vec{v}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$, then solve $\overrightarrow{v^{\prime}}(t)=B \vec{v}$.

We have $L(\vec{v})=(s I-B)^{-1} \cdot \vec{v}(0)$.
3. Phase plane and classification of zero solution:

1) When $\Delta>0$, two roots: nodal source - unstable, $\alpha_{1}, \alpha_{2}>0, \operatorname{Tr} B>$ $0, \operatorname{det} B>0$; nodal sink - stable, $\alpha_{1}, \alpha_{2}<0, \operatorname{Tr} B<0$, $\operatorname{det} B>0$; saddle point - unstable, $\alpha_{1} \alpha_{2}<0, \operatorname{det} B<0$.
2) When $\Delta<0$, two complex roots: spiral source - unstable, $\operatorname{Tr} B>0$; spiral sink - stable, $\operatorname{Tr} B<0$; center - stable, $\operatorname{Tr} B=0$.
3) To determine clockwise or anti-clockwise: Let $y=0$, check the sign of $d y / d t$ near positive x-axis.
4. Warfare model: Compare with the gradient of basic trajectory lines to decide which side will win.

Part 5 Partial Differential Equations (PDEs)

1. Sturm-Liouville equation: For $X^{\prime \prime}(x)+\lambda X(x)=0$, non-zero solution $X(x)=C \sin \left(\frac{n \pi}{L} x\right)$ exists if and only if $\lambda=\left(\frac{n \pi}{L}\right)^{2}$.
2. Wave equation: For $c^{2} y_{x x}(x, t)=y_{t t}(x, t)$, given $y(0, t)=y(L, t)=0$ and $y(x, 0)=f(x), y_{t}(x, 0)=0$, the solution is $y(x, t)=$ $\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L} x\right) \cos \left(c \frac{n \pi}{L} t\right)$, where $A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cdot \sin \left(\frac{n \pi}{L} x\right) d x$. Or, you can directly compare the coefficients.
d'Alembert's solution: $y(x, t)=(f(x+c t)+f(x-c t)) / 2$.
3. Heat equation: For $u_{t}(x, t)=c^{2} u_{x x}(x, t)$, given $u(x, 0)=f(x)$ and $u(0, t)=u(L, t)=0$, the solution is $u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L} x\right)$. $e^{-c^{2}\left(\frac{n \pi}{L}\right)^{2} t}$ where $A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cdot \sin \left(\frac{n \pi}{L} x\right) d x$.
4. Laplace equation: For $u_{y y}(x, y)=-u_{x x}(x, y)$, given $u(x, 0)=$ $f(x), u(x, K)=0$ and $u(0, y)=u(L, y)=0$, then the solution is $u(x, y)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L} x\right) \sinh \left(\frac{n \pi c}{L}(y-k)\right)$ where we have $A_{n}=$ $\frac{2}{L \sinh \frac{-n \pi c K}{L}} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x$.
5. Useful Integral: $\int x \sin \lambda x d x=\frac{\sin \lambda x}{\lambda^{2}}-\frac{x \cos \lambda x}{\lambda}$

$$
\int x^{2} \sin \lambda x d x=\frac{2 x \sin \lambda x}{\lambda^{2}}+\frac{\left(2-\lambda^{2} x^{2}\right) \cos \lambda x}{\lambda^{3}}
$$

