MA1506 Final Cheat-sheet AY2016/2017 Semester 2

Part 1 Mathematical Modelling

1. Harmonic Oscillator

0) Newton's 2nd Law tells x as position, \dot{x} as velocity, \ddot{x} as acceleration. 1) Simple harmonic oscillator (pendulum): We have $m\ddot{x} = -kx$, which is usually written as $\ddot{x} + \omega^2 x = 0$. The phase-amplitude form is $x(t) = A\cos(\omega t - \delta)$. Here, A is amplitude, $T = 2\pi\sqrt{m/k}$ is period, f = 1/Tis frequency, ω is angular frequency. When initial conditions are given, we have $A = \sqrt{x_0^2 + (v_0/\omega)^2}$.

2) Damped harmonic oscillator: We have $m\ddot{x} + b\dot{x} + kx = 0$, where m, b, k > 0. When $b^2 - 4mk > 0$, over dumping, goes to 0 rapidly without oscillation; when $b^2 - 4mk = 0$, critical dumping, goes to 0 rapidly without oscillation; when $b^2 - 4mk < 0$, under dumping, goes to 0 slowly with oscillation. For the 3^{rd} case, we have $x(t) = Ae^{-(b/2m)t}\cos(\omega t - \delta)$ where $\omega = \sqrt{4mk - b^2}/2m$. This is applicable to pendulum with air resistance.

3) Forced undamped oscillator: We have $m\ddot{x} + kx = F_0 \cos \alpha t$ whose solution is $x(t) = A\cos(\omega t - \delta) + \frac{F_0}{\omega^2 - \alpha^2} \cdot \cos \alpha t$ where $\omega = \sqrt{k/m}$. If we know $x(0) = \dot{x}(0) = 0$, then $x(t) = A(t)\sin(\frac{\alpha+\omega}{2}t)$ where $A(t) = \frac{F_0}{\alpha^2 - \omega^2}\sin(\frac{\alpha-\omega}{2}t)$. **Beating** means the faster signal $(\alpha + \omega)/2$ is modulated by the slower one $(\alpha - \omega)/2$, so we can only hear A(t); **resonance** means when $\alpha = \omega$, then $A(t) = F_0 t/(2m\omega)$ and oscillation goes out of control. 4) Forced damped oscillator: We have $m\ddot{x} + b\dot{x} + kx = F_0 \cos \alpha t$. If t is big enough, steady state solution is $x(t) = x_p(t) = A(\alpha) \cdot \cos(\alpha t - \gamma)$ where $A(\alpha) = \frac{F_0/m}{\sqrt{(\omega^2 - \alpha^2)^2 + (b^2\alpha^2)/m^2}}$ and $\omega = \sqrt{k/m}$.

5) Equilibrium & Stability: Equilibrium solution means x(t) is a constant or $\dot{x} = 0$. Equilibrium points are stable if points nearby stay close to it. 2. Buoyancy Force & Cantilevered Beam

1) Archimedes' principle: We have $m\ddot{x} = -xA\rho g$, which is similar to simple harmonic motion $\ddot{x} + \omega^2 x = 0$ where $\omega = \sqrt{A\rho g/m}$.

2) Euler's equation: We have $\frac{d^2}{dx^2} \left(EI \frac{d^2 y}{dx^2} \right) = W(x)$, which usually becomes $\frac{d^4 y}{dx^4} = \frac{-\alpha}{EI}$ when W(x) is constant. Then, the solution becomes $y(x) = \frac{\alpha L^4}{2EI} \left(-\frac{1}{12} \left(\frac{x}{L} \right)^4 + \frac{1}{3} \left(\frac{x}{L} \right)^3 - \frac{1}{2} \left(\frac{x}{L} \right)^2 \right)$. 3. Population Model

0) *No-crossing principle*: Since there is exactly one solution for any 1st order ODE with given initial condition, curves never intersect.

1) Malthus model: Given $\frac{dN}{dt} = (B - D) \cdot N$, its solution is $N(t) = N_0 e^{kt}$ where k = B - D. If k > 0, population explosion; if k = 0, population stable; if k < 0, population extinction.

2) Logistic model: Given $\frac{dN}{dt} = (B - sN) \cdot N$, its solution is $N(t) = \frac{B}{s + (\frac{B}{N_0} - s)e^{-Bt}}$ with sustainable value B/s. If $N_0 < B/s$, then N(t) keeps

increasing and tends to the sustainable value; if $N_0 > B/s$, then N(t) keeps decreasing and tends to the sustainable value.

3) *Harvesting model*: Given $\frac{dN}{dt} = BN - sN^2 - E$, let $\Delta = B^2 - 4sE$. If $\Delta < 0$, no equilibrium point, keep decreasing until extinction; if $\Delta > 0$, have two guidelines (upper stable & lower unstable) and three regions, the upper region is good, the middle one is able to bounce back, the lower one is dangerous; if $\Delta = 0$, have one guideline and two increasing regions.

Extinction time: Integrate $T = \int_{N_0}^0 \frac{1}{-sN^2 + BN - E} dN$.

Part 2 Laplace Transform

1. Laplace transform for basic functions:

$$L(e^{at}) = \frac{1}{s-a} \qquad L(t^n) = \frac{n!}{s^{n+1}}$$
$$L(\sin \omega t) = \frac{\omega}{s^2 + \omega^2} \qquad L(\cos \omega t) = \frac{s}{s^2 + \omega^2}$$
$$L(\sinh \omega t) = \frac{\omega}{s^2 - \omega^2} \qquad L(\cosh \omega t) = \frac{s}{s^2 - \omega^2}$$

2. <u>Derivative transform</u>:

 $L(f') = sL(f) - f(0) \qquad L(f'') = s^2L(f) - sf(0) - f'(0)$ 3. <u>s-shifting</u>: $L(e^{at}f(t)) = F(s-a) \ L(t^n f(t)) = (-1)^n F^{(n)}(s)$ 4. <u>t-shifting</u>: $L(f(t-a)u(t-a)) = e^{-as}F(s)$ 5. <u>Dirac delta function</u>: We have $\delta(t-t_0) = 0$ for $t \neq t_0$ and $\int_{-\infty}^{\infty} \delta(t-t_0) dt = 1$, then $L(\delta(t-t_0)) = e^{-st_0}$.

Good Luck!

1

6. Handle non-standard data: method of undetermined coefficients or method of function translation.

Part 3 Matrix

1. $n \times n$ matrix: symmetric $A^T = A$, anti-symmetric $A^T = -A$, identity AI = IA = A, orthogonal $B \cdot B^T = I$, involutory AA = I.

2. *Rotation matrix* (anti-clockwise): $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

3. *Shear matrix* (clockwise, parallel to x-axis): $\begin{bmatrix} 1 & \tan \theta \\ 0 & 1 \end{bmatrix}$.

4. Matrix with solution of equations: Given $A \cdot X = B$, so we have X = $A^{-1} \cdot B$, when A is a $n \times n$ matrix and B is a $n \times 1$ matrix.

When $X \neq 0$, a unique solution exists if det(A) $\neq 0$. When X = 0, there are infinite non-zero solutions if det(A) = 0, there is only a zero solution if $det(A) \neq 0.$

5. Leontief input-output model: $X = (I - M)^{-1} \cdot D$.

6. Eigenvalue & eigenvector: Given $T\vec{u} = \lambda \vec{u}$, eigenvalues and corresponding eigenvectors can be found by $det(T - \lambda I) = 0$.

Sum of the eigenvalues is the trace of the matrix, while product of the eigenvalues is the determinant of the matrix.

7. Diagonalization: For an $n \times n$ matrix A, it is diagonalizable if A = PDP^{-1} , where P is matrix of n non-parallel eigenvectors and D is the diagonal matrix of n eigenvalues.

8. Weather forecast model: we have $M^n = P \begin{bmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{bmatrix} P^{-1}$.

9. Markov chain: For a transform M, becomes M^n after n times.

9. Dimension of linear transformation: An $m \times n$ matrix will transform a n-D vector into a *m*-D vector.

10. Volume and determinant: The determinant of a 2×2 matrix is the area of parallelogram, while that of a 3×3 matrix is the volume of parallelepiped (rank 3, rank 2, rank 1). For a plane generated by \vec{u} and \vec{v} , \vec{w} is on the plane if and only if $(\vec{u} \times \vec{v}) \cdot \vec{w} = 0$.

Part 4 System of ODEs

1. Method of eigenvalue: $\alpha = (Tr(B) \pm \sqrt{Tr^2(B) - 4 \det(B)})/2$.

If $\Delta > 0$, the general solution is $c_1 u_1 e^{\alpha_1 t} + c_2 u_2 e^{\alpha_2 t}$ with eigenvalues α_1, α_2 and corresponding eigenvectors u_1, u_2 ; if $\Delta < 0$, the general solution is $e^{\alpha t} \cdot (u \cos \beta t - v \sin \beta t) + i e^{\alpha t} \cdot (u \sin \beta t + v \cos \beta t)$ where eigenvalues are $\alpha \pm i\beta$.

2. <u>Method of Laplace transform</u>: Let $\vec{v}(t) = \begin{bmatrix} x(t) \\ v(t) \end{bmatrix}$, then solve $\vec{v'}(t) = B\vec{v}$.

We have $L(\vec{v}) = (sI - B)^{-1} \cdot \vec{v}(0)$.

3. Phase plane and classification of zero solution:

1) When $\Delta > 0$, two roots: nodal source – unstable, $\alpha_1, \alpha_2 > 0, TrB > 0$ 0, detB > 0; nodal sink – stable, $\alpha_1, \alpha_2 < 0, TrB < 0, detB > 0$; saddle point – unstable, $\alpha_1 \alpha_2 < 0$, det B < 0.

2) When $\Delta < 0$, two complex roots: spiral source – unstable, TrB > 0; spiral sink – stable, TrB < 0;center – stable, TrB = 0.

3) To determine clockwise or anti-clockwise: Let y = 0, check the sign of dy/dt near positive x-axis.

4. Warfare model: Compare with the gradient of basic trajectory lines to decide which side will win.

Part 5 Partial Differential Equations (PDEs)

1. Sturm-Liouville equation: For $X''(x) + \lambda X(x) = 0$, non-zero solution $X(x) = C \sin\left(\frac{n\pi}{L}x\right)$ exists if and only if $\lambda = \left(\frac{n\pi}{L}\right)^2$. 2. <u>Wave equation</u>: For $c^2 y_{xx}(x,t) = y_{tt}(x,t)$, given y(0,t) = y(L,t) = 0 $y(x,0) = f(x), y_t(x,0) = 0$, the solution is y(x,t) =and $\sum_{n=1}^{\infty} A_n \sin(\frac{n\pi}{L}x) \cos\left(c\frac{n\pi}{L}t\right), \text{ where } A_n = \frac{2}{L} \int_0^L f(x) \cdot \sin(\frac{n\pi}{L}x) \, dx. \text{ Or,}$ you can directly *compare the coefficients*. d'Alembert's solution: v(x,t) = (f(x+ct) + f(x-ct))/2. 3. Heat equation: For $u_t(x,t) = c^2 u_{rr}(x,t)$, given u(x,0) = f(x) and u(0,t) = u(L,t) = 0, the solution is $u(x,t) = \sum_{n=1}^{\infty} A_n \sin(\frac{n\pi}{L}x)$. $e^{-c^2 \left(\frac{n\pi}{L}\right)^2 t}$ where $A_n = \frac{2}{L} \int_0^L f(x) \cdot \sin\left(\frac{n\pi}{L}x\right) dx$. 4. <u>Laplace equation</u>: For $u_{yy}(x, y) = -u_{xx}(x, y)$, given u(x, 0) =f(x), u(x, K) = 0 and u(0, y) = u(L, y) = 0, then the solution is $u(x,y) = \sum_{n=1}^{\infty} A_n \sin(\frac{n\pi}{L}x) \sinh(\frac{n\pi c}{L}(y-k))$ where we have $A_n =$ $\frac{2}{L\sinh\frac{-n\pi cK}{L}}\int_0^L f(x)\sin(\frac{n\pi}{L}x)\,dx.$ 5. <u>Useful Integral</u>: $\int x \sin \lambda x \, dx = \frac{\sin \lambda x}{x^2} - \frac{x \cos \lambda x}{x^2}$ $\int x^2 \sin \lambda x \, dx = \frac{2x \sin \lambda x}{\lambda^2} + \frac{(2 - \lambda^2 x^2) \cos \lambda x}{\lambda^3}$ ---End---

Good Luck!