ST2334 Final Examination Cheat-sheet Part 1 Statistical Description

1. Random variable: categorical (nominal, ordinal) & numerical (discrete, continuous).

2. Sampling: *non-probability* (quota, convenience, judgment) & *probability* (simple random, systematic, cluster – units in a cluster are like the population, stratified – units in a stratum are homogeneous).

3. To display <u>categorical variables</u>: pie chart, bar chart, pareto chart.

4. To display <u>numerical variables</u>: histogram, stem-and-leaf plot, dot-plot.

5. Measures of location: mean, median, mode (unimodal, bimodal, trimodal) & percentile (quantile).

6. Measures of spread: variance (standard deviation), coefficient of variation (CV), range, inter-quartile range (IQR), box plot (box-and-whisker plot), five-number summary.

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} (\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2})$$

7. Shape of a distribution: symmetric & skewed (left, right). When left skewed, mean < median < mode; right skewed, mode < median < mean.

Part 2 Probability

1. Terms: experiment, outcome, sample space, event.

2. Event: null, union, intersection, complement, mutually exclusive, independent.

3. Interpretation of probability: equally-likely outcomes, frequency interpretation, personal probability.

4. Conditional probability: $P(B|A) = \frac{P(A \cap B)}{P(A)}$

5. Two events are independent if and only if: 1) $P(A \cap B) = P(A)P(B)$; 2) P(A|B) = P(A); 3) P(B|A) = P(B).

6. Partition: If $B_1, B_2, ..., B_n$ are mutually exclusive and $B_1 \cup B_2 \cup ... \cup B_n = S$, we call them being a partition of S.

7. Total probability: $P(A) = \sum_{i=1}^{n} P(B_i) P(A|B_i)$ for any partition of S.

8. Bayes' Theorem: $P(B_k|A) = \frac{P(B_k)P(A|B_k)}{\sum_{i=1}^n P(B_i)P(A|B_i)}$.

9. Two *non-trivial mutually-exclusive* events must be dependent. **Part 3 Discrete Random Variable**

Good Luck!

- 1. Probability mass function (PMF): 1) $f(x_i) \ge 0$; 2) $\sum f(x_i) = 1$.
- 2. Variance: 1) $Var(a + bX) = b^2 \cdot Var(X)$; 2) $Var(X) = E(X^2) (E(X))^2$.
- 3. <u>Bernoulli distribution</u>: If $W \sim B(n,p)$, then $P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$, we also have E(x) = np & Var(x) = np(1-p).

4. <u>Geometric distribution</u>: If $X \sim Geom(p)$, then $P(X = k) = (1 - p)^{k-1}p$, we

also have
$$E(x) = \frac{1}{p} \& Var(x) = \frac{1-p}{p^2}$$
, with CDF being $F(x) = 1 - (1-p)^x$.

4. <u>Poisson distribution</u>: If $X \sim Pois(\lambda)$, then $P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$, we also have

 $E(x) = \lambda \& Var(x) = \lambda.$

5. When $n \ge 20, p \le 0.05$ or $n \ge 100, np \le 10$, we can use Poisson to approximate Binomial by $B(n, \lambda/n) \approx Pois(\lambda)$.

6. <u>Cumulative distribution function</u> (CDF) can be applied to discrete & continuous random variables, it is non-decreasing $F(x) = P(X \le x)$.

Part 4 Continuous Random Variable

1. Probability density function (PDF): 1) $f(x_i) \ge 0$; 2) 1 $\int_{-\infty}^{\infty} f(x) dx = 1$.

2. Mean:
$$\mu = E(X) = \int_{-\infty}^{\infty} x f_x(x) dx$$
 and $E(g(x)) = \int_{-\infty}^{\infty} g(x) f_x(x) dx$.

3. <u>Normal distribution</u>: If $X \sim N(\mu, \sigma^2)$, then $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/\sigma^2}$, we also

have $E(X) = \mu$ and $var(X) = \sigma^2$.

4. When np and n(1-p) are both larger than 15, we can use normal distribution to approximate Binomial distribution 1 $X \sim N(np, np(1-p))$.

5. When approximating a discrete random variable using a continuous random variable, *continuity correction* is necessary.

6. <u>Uniform distribution</u>: If $X \sim U(a, b)$, then $1 f_X(x) = 1/(b-a)$, we also have E(x) = (a+b)/2, $var(x) = (b-a)^2/12$ and F(x) = (x-a)/(b-a).

7. <u>Exponential distribution</u>: If $X \sim Exp(\lambda)$, then $f_X(x) = \lambda e^{-\lambda x}$, we also have $E(x) = 1/\lambda$, $var(x) = 1/\lambda^2$ and $F_X(x) = 1 - e^{-\lambda x}$. It is also memory-less since P(X > s + t | X > s) = P(X + t).

8. <u>Chebyshev's inequality</u>: $P(|X - \mu| \ge k\sigma) \le 1/k^2$.

Part 5 Joint Distribution

ST2334 Probability & Statistics

- 1. X and Y are independent if $f_{X,Y}(x, y) = f_X(x)f_Y(y)$ for all x and y.
- 2. <u>Marginal distribution</u>: $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy$.

3. <u>Conditional distribution</u>: $f_{X|Y}(x|y) = f_{X,Y}(x,y)/f_Y(y)$.

4. <u>Covariance</u>: cov(X, Y) = E(XY) - E(X)E(Y). If X and Y are independent, cov(X, Y) = 0. Also, $var(aX + bY) = a^2 var(X) + b^2 var(Y) + 2ab \cdot cov(X, Y)$.

Part 6 Sampling & Sampling Inference

1. For random samples of size *n* taken from population with mean μ and variance σ^2 , the sample mean has $E(\bar{X}) = \mu$ and $var(\bar{X}) = var(X)/n$.

2. <u>Law of large numbers (LLN)</u>: $\lim_{n \to \infty} P(|\bar{X} - \mu| > \epsilon) = 0$ for any $\epsilon \in \mathbb{R}$.

3. <u>Central limit theorem (CLT)</u>: $\lim_{n \to \infty} \bar{X} \sim N(\mu, \frac{\sigma^2}{n})$. It approximates well the

sampling distribution when $n \ge 30$.

4. When X_i is normal, $\overline{X} \sim t_{n-1}$ for small n.

5. When X_i is normal, $\chi^2 = \frac{(n-1)S^2}{\sigma^2}$ with parameter $\nu = n - 1$.

6. Maximum error: With probability $1 - \alpha$, the error $|\bar{X} - \mu|$ is within $E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.

7. Four cases of point estimation:

Case	σ	n	Popula tion	Statistic	E	<i>n</i> needed for desired <i>E</i> and α
Ι	known	any	Normal	$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	$z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$	$\left(\frac{Z_{\alpha/2} \sigma}{E}\right)^2$
II	known	large	any	$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	$z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$	$\left(\frac{z_{\alpha/2} \sigma}{E}\right)^2$
III	un- known	small	Normal	$t = \frac{\bar{X} - \mu}{S/\sqrt{n}}$	$t_{n-1;\alpha/2}\frac{S}{\sqrt{n}}$	$\left(\frac{t_{n-1;\alpha/2} S}{E}\right)^2$
IV	un- known	large	any	$t = \frac{\bar{X} - \mu}{S/\sqrt{n}}$	$t_{n-1;\alpha/2} \frac{S}{\sqrt{n}}$	$\left(\frac{t_{n-1;\alpha/2} S}{E}\right)^2$

8. If P(A < μ < B) = α, then (A, B) is the α confidence interval for μ.
9. Five steps to hypothesis testing:

1) Set up null vs alternative hypotheses.

- 2) Determine the level of significance.
- 3) Identify statistic, distribution, small/large sample & rejection criteria.
- 4) Compute based on data and compare by one/double-side.
- 5) Make conclusion on whether to reject num hypothesis.

10. Two types of errors:

	Not reject H_0	Reject H ₀
H_0 is true	Correct Decision	Type I error
H_0 is false	Type II error	Correct Decision

11. Usually, we can also use p-value, the "observed" one/double-sided confidence interval.

Part 6 Sampling Inference of Two Means

1. There are usually two types of designs for comparing two treatments: independent complete randomization & matched pair randomization.

2. For two independent large samples,
$$(\bar{X} - \bar{Y}) \sim N(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}})$$
.

3. For two small samples which are both normally distributed, the equal variance assumption holds if and only if $0.5 \le s_1/s_2 \le 2$.

- 4. We define the pooled estimator as $S_p^2 = \frac{(n_1 1)S_1^2 + (n_2 1)S_2^2}{n_1 + n_2 2}$.
- 5. Under equal variance assumption, $T = \frac{(\bar{x} \bar{y}) \delta}{S_p \sqrt{1/n_1 + 1/n_2}} \sim t_{n_1 + n_2 2}$.

6. Without equal variance assumption, for two small samples which are both normally distributed, $T = \frac{(\bar{x} - \bar{y}) - \delta}{\sqrt{S_1^2/n_1 + S_2^2/n_2}} \sim t_k$ where k is defined as

$$k = \left[\frac{\left(S_1^2/n_1 + S_2^2/n_2\right)^2}{\left(\frac{S_1^2/n_1}{n_1 - 1} + \frac{\left(S_2^2/n_2\right)^2}{n_2 - 1}\right]} \right]$$

7. For matched pair samples, the difference of two means can be considered as single-variable sampling which follows normal distribution (for large samples) or t-distribution (for small samples under normal).