ST2334 Final Examination Cheat-sheet

Part 1 Statistical Description

1. Random variable: categorical (nominal, ordinal) \& numerical (discrete, continuous).
2. Sampling: non-probability (quota, convenience, judgment) \& probability (simple random, systematic, cluster - units in a cluster are like the population, stratified - units in a stratum are homogeneous).
3. To display categorical variables: pie chart, bar chart, pareto chart.
4. To display numerical variables: histogram, stem-and-leaf plot, dot-plot.
5. Measures of location: mean, median, mode (unimodal, bimodal, trimodal) \& percentile (quantile).
6. Measures of spread: variance (standard deviation), coefficient of variation (CV), range, inter-quartile range (IQR), box plot (box-and-whisker plot), five-number summary.

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right)
$$

7. Shape of a distribution: symmetric \& skewed (left, right). When left skewed, mean < median < mode; right skewed, mode < median < mean.

Part 2 Probability

1. Terms: experiment, outcome, sample space, event.
2. Event: null, union, intersection, complement, mutually exclusive, independent.
3. Interpretation of probability: equally-likely outcomes, frequency interpretation, personal probability.
4. Conditional probability: $P(B \mid A)=\frac{P(A \cap B)}{P(A)}$
5. Two events are independent if and only if: 1) $P(A \cap B)=P(A) P(B) ; 2)$ $P(A \mid B)=P(A) ; 3) P(B \mid A)=P(B)$.
6. Partition: If $B_{1}, B_{2}, \ldots, B_{n}$ are mutually exclusive and $B_{1} \cup B_{2} \cup \ldots \cup B_{n}=\mathrm{S}$, we call them being a partition of S.
7. Total probability: $P(A)=\sum_{i=1}^{n} P\left(B_{i}\right) P\left(A \mid B_{i}\right)$ for any partition of S.
8. Bayes' Theorem: $P\left(B_{k} \mid A\right)=\frac{P\left(B_{k}\right) P\left(A \mid B_{k}\right)}{\sum_{i=1}^{n} P\left(B_{i}\right) P\left(A \mid B_{i}\right)}$.
9. Two non-trivial mutually-exclusive events must be dependent.

Part 3 Discrete Random Variable

1. Probability mass function (PMF): 1) $\left.f\left(x_{i}\right) \geq 0 ; 2\right) \sum f\left(x_{i}\right)=1$.
2. Variance: 1) $\left.\operatorname{Var}(a+b X)=b^{2} \cdot \operatorname{Var}(X) ; 2\right) \operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}$.
3. Bernoulli distribution: If $W \sim B(n, p)$, then $P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$, we also have $E(x)=n p \& \operatorname{Var}(x)=n p(1-p)$.
4. Geometric distribution: If $X \sim \operatorname{Geom}(p)$, then $P(X=k)=(1-p)^{k-1} p$, we also have $E(x)=\frac{1}{p} \& \operatorname{Var}(x)=\frac{1-p}{p^{2}}$, with CDF being $F(x)=1-(1-p)^{x}$.
5. Poisson distribution: If $X \sim \operatorname{Pois}(\lambda)$, then $P(X=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}$, we also have $E(x)=\lambda \& \operatorname{Var}(x)=\lambda$.
6. When $n \geq 20, p \leq 0.05$ or $n \geq 100, n p \leq 10$, we can use Poisson to approximate Binomial by $B(n, \lambda / n) \approx \operatorname{Pois}(\lambda)$.
7. Cumulative distribution function (CDF) can be applied to discrete \& continuous random variables, it is non-decreasing $F(x)=P(X \leq x)$.

Part 4 Continuous Random Variable

1. Probability density function (PDF): 1) $\left.f\left(x_{i}\right) \geq 0 ; 2\right) 1 \int_{-\infty}^{\infty} f(x) d x=1$.
2. Mean: $\mu=E(X)=\int_{-\infty}^{\infty} x f_{x}(x) d x$ and $E(g(x))=\int_{-\infty}^{\infty} g(x) f_{x}(x) d x$.
3. Normal distribution: If $X \sim N\left(\mu, \sigma^{2}\right)$, then $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / \sigma^{2}}$, we also have $E(X)=\mu$ and $\operatorname{var}(X)=\sigma^{2}$.
4. When $n p$ and $n(1-p)$ are both larger than 15 , we can use normal distribution to approximate Binomial distribution $1 \quad X \sim N(n p, n p(1-p))$.
5. When approximating a discrete random variable using a continuous random variable, continuity correction is necessary.
6. Uniform distribution: If $X \sim U(a, b)$, then $1 f_{X}(x)=1 /(b-a)$, we also have $E(x)=(a+b) / 2, \operatorname{var}(x)=(b-a)^{2} / 12$ and $F(x)=(x-a) /(b-a)$.
7. Exponential distribution: If $X \sim \operatorname{Exp}(\lambda)$, then $f_{X}(x)=\lambda e^{-\lambda x}$, we also have $E(x)=1 / \lambda, \operatorname{var}(x)=1 / \lambda^{2}$ and $F_{X}(x)=1-e^{-\lambda x}$. It is also memory-less since $P(X>s+t \mid X>s)=P(X+t)$.
8. Chebyshev's inequality: $P(|X-\mu| \geq k \sigma) \leq 1 / k^{2}$.

Part 5 Joint Distribution

1. X and Y are independent if $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ for all x and y.
2. Marginal distribution: $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$.
3. Conditional distribution: $f_{X \mid Y}(x \mid y)=f_{X, Y}(x, y) / f_{Y}(y)$.
4. Covariance: $\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)$. If X and Y are independent, $\operatorname{cov}(X, Y)=0$. Also, $\operatorname{var}(a X+b Y)=a^{2} \operatorname{var}(X)+b^{2} \operatorname{var}(Y)+2 a b \cdot \operatorname{cov}(X, Y)$.

Part 6 Sampling \& Sampling Inference

1. For random samples of size n taken from population with mean μ and variance σ^{2}, the sample mean has $E(\bar{X})=\mu$ and $\operatorname{var}(\bar{X})=\operatorname{var}(X) / n$.
2. Law of large numbers (LLN): $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{P}(|\bar{X}-\mu|>\epsilon)=0$ for any $\epsilon \in \mathbb{R}$.
3. Central limit theorem (CLT): $\lim _{\mathrm{n} \rightarrow \infty} \bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$. It approximates well the sampling distribution when $n \geq 30$.
4. When X_{i} is normal, $\bar{X} \sim t_{n-1}$ for small n.
5. When X_{i} is normal, $\chi^{2}=\frac{(n-1) S^{2}}{\sigma^{2}}$ with parameter $v=n-1$.
6. Maximum error: With probability $1-\alpha$, the error $|\bar{X}-\mu|$ is within $E=z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$.
7. Four cases of point estimation:

Case	$\boldsymbol{\sigma}$	\boldsymbol{n}	Popula tion	Statistic	\boldsymbol{E}	\boldsymbol{n} needed for desired \boldsymbol{E} and $\boldsymbol{\alpha}$
I	known	any	Normal	$Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$	$z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$	$\left(\frac{z_{\alpha / 2} \sigma}{E}\right)^{2}$
II	known	large	any	$Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$	$z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$	$\left(\frac{z_{\alpha / 2} \sigma}{E}\right)^{2}$
III	un- known	small	Normal	$t=\frac{\bar{X}-\mu}{S / \sqrt{n}}$	$t_{n-1 ; \alpha / 2} \frac{S}{\sqrt{n}}$	$\left(\frac{t_{n-1 ; \alpha / 2} S}{E}\right)^{2}$
IV	un- known	large	any	$t=\frac{\bar{X}-\mu}{S / \sqrt{n}}$	$t_{n-1 ; \alpha / 2} \frac{S}{\sqrt{n}}$	$\left(\frac{t_{n-1 ; \alpha / 2} S}{E}\right)^{2}$

8. If $P(A<\mu<B)=\alpha$, then (A, B) is the α confidence interval for μ.
9. Five steps to hypothesis testing:
1) Set up null vs alternative hypotheses.
2) Determine the level of significance.
3) Identify statistic, distribution, small/large sample \& rejection criteria.
4) Compute based on data and compare by one/double-side.
5) Make conclusion on whether to reject num hypothesis.
10. Two types of errors:

	Not reject $\boldsymbol{H}_{\mathbf{0}}$	Reject $\boldsymbol{H}_{\mathbf{0}}$
H_{0} is true	Correct Decision	Type I error
H_{0} is false	Type II error	Correct Decision

11. Usually, we can also use p-value, the "observed" one/double-sided confidence interval.

Part 6 Sampling Inference of Two Means

1. There are usually two types of designs for comparing two treatments: independent complete randomization \& matched pair randomization.
2. For two independent large samples, $(\bar{X}-\bar{Y}) \sim N\left(\mu_{1}-\mu_{2}, \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\right)$.
3. For two small samples which are both normally distributed, the equal variance assumption holds if and only if $0.5 \leq s_{1} / s_{2} \leq 2$.
4. We define the pooled estimator as $S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}$.
5. Under equal variance assumption, $\mathrm{T}=\frac{(\bar{X}-\bar{Y})-\delta}{s_{p} \sqrt{1 / n_{1}+1 / n_{2}}} \sim t_{n_{1}+n_{2}-2}$.
6. Without equal variance assumption, for two small samples which are both normally distributed, $\mathrm{T}=\frac{(\bar{X}-\bar{Y})-\delta}{\sqrt{S_{1}^{2} / n_{1}+S_{2}^{2} / n_{2}}} \sim t_{k}$ where k is defined as

$$
\left.k=\left\lvert\, \frac{\left(S_{1}^{2} / n_{1}+S_{2}^{2} / n_{2}\right)^{2}}{\left[\frac{\left(S_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(s_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}\right.}\right.\right\rfloor
$$

7. For matched pair samples, the difference of two means can be considered as single-variable sampling which follows normal distribution (for large samples) or t-distribution (for small samples under normal).
