ST2334 Midterm Cheat-sheet

Part 1 Statistical Description

1. Random variable: categorical (nominal, ordinal) \& numerical (discrete, continuous).
2. Sampling: random (quota, convenience, judgment) \& non-random (simple random, systematic, cluster - units in a cluster are like the population, stratified - units in a stratum are homogeneous).
3. Ways to display categorical variables: pie chart, bar chart, pareto chart. 4. Ways to display numerical variables: histogram, stem-and-leaf plot, dot-plot.
4. Measures of location: mean, median, mode (unimodal, bimodal, trimodal) \& percentile (quantile).
5. Measures of spread: variance (standard deviation), coefficient of variation (CV), range, inter-quartile range (IQR), box plot (box-and-whisker plot), five-number summary.

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right)
$$

7. Shape of a distribution: symmetric \& skewed (left, right). For a left-skewed distribution, its mean value is usually smaller than its median; for a right-skewed one, its mean is usually larger than its median.

Part 2 Probability

1. Terms: experiment, outcome, sample space, event.
2. Event: null, union, intersection, complement, mutually exclusive, independent.
3. Interpretation of probability: equally-likely outcomes, frequency interpretation, personal probability.
4. Conditional probability: $P(B \mid A)=\frac{P(A \cap B)}{P(A)}$
5. Two events are independent if and only if: 1) $P(A \cap B)=P(A) P(B) ; 2)$ $P(A \mid B)=P(A) ; 3) P(B \mid A)=P(B)$.
6. Partition: If $B_{1}, B_{2}, \ldots, B_{n}$ are mutually exclusive and $B_{1} \cup B_{2} \cup \ldots \cup B_{n}=\mathrm{S}$, we call them being a partition of S.
7. Total probability: for any partition of S , we have $P(A)=\sum_{i=1}^{n} P\left(B_{i}\right) P\left(A \mid B_{i}\right)$
8. Bayes' Theorem: $P\left(B_{k} \mid A\right)=\frac{P\left(B_{k}\right) P\left(A \mid B_{k}\right)}{\sum_{i=1}^{n} P\left(B_{i}\right) P\left(A \mid B_{i}\right)}$.
9. Two non-trivial mutually-exclusive events must be dependent.

Part 3 Discrete Random Variable

1. Probability mass function (PMF): 1) $\left.f\left(x_{i}\right) \geq 0 ; 2\right) \sum f\left(x_{i}\right)=1$.
2. Variance: 1) $\left.\operatorname{Var}(a+b X)=b^{2} \cdot \operatorname{Var}(X) ; 2\right) \operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}$.
3. Bernoulli distribution: If $W \sim B(n, p)$, then $P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$, we also have $E(x)=n p \& \operatorname{Var}(x)=n p(1-p)$.
4. Geometric distribution: If $X \sim \operatorname{Geom}(p)$, then $P(X=k)=(1-p)^{k-1} p$, we also have $E(x)=\frac{1}{p} \& \operatorname{Var}(x)=\frac{1-p}{p^{2}}$, with CDF being $F(x)=1-(1-p)^{x}$.
5. Poisson distribution: If $X \sim \operatorname{Pois}(\lambda)$, then $P(X=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}$, we also have $E(x)=\lambda \& \operatorname{Var}(x)=\lambda$.
6. When $n \geq 20, p \leq 0.05$ or $n \geq 100, n p \leq 10$, we can use Poisson to approximate $\operatorname{Binomial}$ by $B(n, \lambda / n) \approx \operatorname{Pois}(\lambda)$.
7. Cumulative distribution function (CDF): $F(x)=P(X \leq x)$, non-decreasing. CDF can be applied to discrete $\&$ continuous random variables.

Part 4 Continuous Random Variable

1. Probability density function (PDF): 1) $\left.f\left(x_{i}\right) \geq 0 ; 2\right) 1 \int_{-\infty}^{\infty} f(x) d x=1$.
2. Mean: $\mu=E(X)=\int_{-\infty}^{\infty} x f_{x}(x) d x$.
